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1. Introduction

The audiovisual laboratory of the junior professorship Media Computing at Chemnitz

University of Technology, as described in [HMH+], was designed to develop and

improve acoustic source localization with microphone arrays (described in [ZHK17]).

At the core of the laboratory is a frame cage (L×W ×H = 4.26× 3.756× 3.497m)

inside of which sensors are installed and sound sources are placed. To support de-

velopment and evaluation of acoustic localization methods, a prototype software for

the localization of loudspeakers within the frame cage in the laboratory environment

must be designed, utilizing the available optical 3D-sensors. This software is designed,

implemented and evaluated in this thesis. In case the optical system is reliable and

precise enough, it may serve as a ground truth for tests and evaluations of the acoustic

localization system in development.

Whether the optical system is capable of serving as the ground truth for the evalua-

tion of the acoustic localization is dependent on the accuracy of positions measured by

the optical system and the level of accuracy being tested acoustically. To effectively

support series of tests, a program for the optical localization of loudspeaker must be

capable of exporting several object positions of a test setting at once. The localization

software prototype, created in this thesis, provides documentation of the laboratory

test settings by generating a basic, exportable, 3D-model of the laboratory and object

positions. As part of the user interface a model is constantly providing visualization

of the available data and manipulations applied to it.

An essential requirement for the creation of the software prototype is utilizing

existing laboratory equipment. Besides audio technology the laboratory is equipped

with 10 optical Intenta S2000 smart sensors. These sensors are highly specialized in

tasks such as access control and generation of statistical data1. However, due to the

support of Intenta GmbH for the junior professorship Media Computing, images and

point clouds2 created for sensor internal operations are available for development of

the prototype software.

1Information about the S2000 is found in a brochure provided by the sensor

developer Intenta: https://www.intenta.de/files/inhalt/de/sensor-systeme/

brochure-INTENTA-S2000-EN-20160524.pdf
2Point clouds represent 3D-positions. Details about the S2000 point cloud are found in 2.1. For

further information about point clouds form optical sensors see 3.1 and 3.2.

1

https://www.intenta.de/files/inhalt/de/sensor-systeme/brochure-INTENTA-S2000-EN-20160524.pdf
https://www.intenta.de/files/inhalt/de/sensor-systeme/brochure-INTENTA-S2000-EN-20160524.pdf


2. Laboratory, Stereo Sensor and API

This chapter introduces the hardware available for software development. The optical

sensors and software requirements for working with their sensor API are explained in

section 2.1. An example program for streaming connections to the sensor (supplied by

Intenta) is presented in section 2.2. Lastly, in section 2.3, the audiovisual laboratory

itself and the computer system for development and its configuration, along side the

installed connection to the sensors, is described.

2.1. The Intenta S2000

The S2000 sensor is an intelligent monitoring sensor developed for tasks such as room

surveillance, access control and recognition of potentially dangerous situations, e.g.

analyzing human behavior in save areas for working with robots [BPS17]. The sensor

is capable of counting people and differentiating them by size. Dimensions of the

S2000 (presented in fig. 2.1) measure 200×70×33mm, while it weights ca. 500g and

has a maximal power consumption of 5W . To connect to the sensors their Ethernet

port can be used, which is also capable of supplying the power needed for the S2000 to

operate via Power over Ethernet. The recommended mounting height is 2, 50 → 7m

above the ground.1

Internally the S2000 creates a 3D point cloud of its environment based on its two

cameras with a 97o field of view [REK18]. 2D-Images recorded with the sensor consist

of 512×384 or 1280×960 distinguishable picture elements, pixels [Gra99, p. 569]2. As

illustrated in fig. 2.2 the sensor provides an unprocessed color image, two calibrated

gray-scale images and point cloud values stored within an image structure. For each

sensor camera a calibrated images is generated (see fig. 2.2b and 2.2c). The image

structure containing the point cloud information includes the coordinates of every

calibrated left camera image pixel in 3D-space. To represent the 3D-coordinates of

the point cloud in the image (visible in fig. 2.2d) the three coordinate values are

stored in place of the three color values, red, green and blue of an RGB-color image.

Consequently the image structure of the point cloud maps the 2D-positions of pixels

inside the image from the left sensor camera (fig. 2.2b) into a 3D-coordinate system

1This information is based on the S2000 brochure by Intenta: https://www.intenta.de/files/

inhalt/de/sensor-systeme/brochure-INTENTA-S2000-EN-20160524.pdf
2Detailed information about the fundamentals of 2D digital image representation is found in chapter

two of [Jä13].

2

https://www.intenta.de/files/inhalt/de/sensor-systeme/brochure-INTENTA-S2000-EN-20160524.pdf
https://www.intenta.de/files/inhalt/de/sensor-systeme/brochure-INTENTA-S2000-EN-20160524.pdf


2.1. The Intenta S2000

Figure 2.1.: The S2000 smart sensor by the Intenta GmbH (at the top) and its

specifications (at the bottom). The circular gabs in the black layer,

behind the glass covering the sensors face, mark the positions of its cam-

eras. Image and table in this figure have been adopted from the Intenta

S2000 brochure, available at https://www.intenta.de/files/inhalt/

de/sensor-systeme/brochure-INTENTA-S2000-EN-20160524.pdf.

3

https://www.intenta.de/files/inhalt/de/sensor-systeme/brochure-INTENTA-S2000-EN-20160524.pdf
https://www.intenta.de/files/inhalt/de/sensor-systeme/brochure-INTENTA-S2000-EN-20160524.pdf


2. Laboratory, Stereo Sensor and API

(a) 1280×960 pixels.

The raw RGB-

color image form

the left sensor

camera.

(b) 512× 384 pixels.

The calibrated

gray-scale image

from the left

sensor camera.

(c) 512× 384 pixels.

The calibrated

gray-scale image

from the right

sensor camera.

(d) 512× 384 pixels.

The RGB-color

representation of

the sensor point

cloud.

Figure 2.2.: Four images extracted from the S2000 sensor via the SVP2-Protocol, vi-

sualized with OpenCV. Fig. 2.2d is the color representation of coordinate

values transmitted inside an image structure, where the red, green and

blue values are x, y and z coordinates of the point cloud. The other three

images display regular color and brightness (gray-scale) images.

when the color values of the point cloud images equal 2D-position (fig. 2.2d) are

interpreted as 3D-coordinates. Likewise, every point cloud pixel position in 3D-space

is stored with the same index as the corresponding brightness value inside the left

sensor camera image. The common index is determined by the common image size

of 512 × 384 for both, left sensor image and point cloud. Due to the ability of the

calibrated left camera image (fig. 2.2b), it is also referred to as point cloud texture

in this thesis.

To configure the S2000 sensors an HTTP interface, protected by logging credentials,

is used. Any conventional modern web browser, on a computer connected to the

sensor via Ethernet, may be used to connect to this sensor interface by navigating to

the preset static IP address incorporated into the standard configuration of the S2000.

Security relevant settings, like the logging credentials and the IP configuration are

adjustable once logged in. Automatic sensor calibration and complex functionaries

of the sensor, including the detection and counting of people within areas of the

sensors wide field of view, are also configurable through the browser. The images and

point cloud, currently streaming from the sensor, are visible among the configuration

menus and visually support the effect of changes applied to settings. Extracting the

raw point cloud data from the sensor is currently not possible for the general Intenta

costumer, since the S2000 was designed primly to supply its users with statistical,

non visual data.

4



2.2. S2000 API and Multisensorconnection Demo

Figure 2.3.: This flowchart illustrates the essential algorithm of the SVP2 API exam-

ple ”Multisensorconnection”. Execution begins on the top left. Once run-

ning, the program does not terminate by itself, it constantly refreshes the

visualized sensor data (symbolized on the bottom right). The black bar

above ”Create Sensor Thread” indicates parallelism. Thus, one thread

for each sensor.

5



2. Laboratory, Stereo Sensor and API

2.2. S2000 API and Multisensorconnection Demo

To gain access to sensor data and the point cloud image representation, Intenta

utilizes the SVP2-Protocol. Due to the partnership of the Intenta GmbH with the

junior professorship Media Computing through the project localizeIT3, the profes-

sorship was permitted to use selected tools, which provide access to the S2000 for

development. The Intenta program SVPManager, similar to the HTTP interface of

the sensor, allows to configure sensor settings. However, unlike the regular sensor

interface the SVPManager provides an option to change the control mode of the

S2000, such that the point cloud is transmitted via the SVP2-Protocol. Once the

sensors control mode was changed appropriately, the Intenta SVP2 API enables ac-

cess to images and point cloud data through c++ code. The most essential part of

the SVP2 API is the Sensor class, it acts as a mediator, data from the sensor is

stored and extracted from it. In order to use the Sensor class for data extraction,

the API supports several phases needed to initiate actual sensor data access, such

as, automatic sensor detection, connecting to sensors, starting a streaming client and

loading available sensor data frame-wise. To illustrate and test the capabilities of the

API, Intenta created a demo-project which makes use of the OpenCV library (see 3.3)

to display the images, and point cloud image representation, as they are provided by

the sensor. The simplified structure of this API example, called ”Multisensorconnec-

tion”, is illustrated in fig. 2.3 as a flowchart. After discovering the available sensors, a

thread for each sensor is created. Within these threads a streaming connection to the

sensor is running inside loops. New available sensor data is repeatedly buffered and

the image elements contained inside every such buffered data set is displayed. If the

appropriate control mode is selected for each sensor within the SVPManager, images

similar to the examples in fig. 2.2 are visualized for each sensor by the API example.

To connect to a specific sensor, an argument, consisting of protocol and sensor IP is

added, when the program is executed from Microsoft’s command line (e.g. ”demo.exe

svp2://192.168.10.52”). The default development environment for the SVP2 API is

Visual Studio 15 2017 for 64-Bit Microsoft Windows installations. To compile the

program, OpenCV must be installed. Version 3.4.0 of OpenCV supports the example.

Due to the complexity of the API and limited availability of documentation out-

side of the Intenta GmbH, the Multisensorconnection API Demo is utilized as the

foundation of the prototype software developed in this thesis. It does not include

functionality for 3D-visualization of point clouds or provide assistance for general

localization tasks. However, it provides a constant stream of buffered sensor data,

including the current point cloud image. The integration of OpenCV into the Mul-

tisensorconnection API Demo for the visualization simplifies the implementation of

additional OpenCV functionality (see 3.3).

3Find more information about the localizeIT initiative at https://localize-it.de/initiative/
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2.3. Laboratory Hardware Setup

2.3. Laboratory Hardware Setup

For evaluations of acoustic localization methods the laboratory includes 16 loud-

speakers, as specified in tab. 2.1, to act as sound sources. The five different types

of loudspeakers are also visible in fig. 2.4a. The Genelec models are installed on

stands with adjustable height; TANNOY loudspeakers remain on the ground. An

optical localization system must be able to determine position areas of these five

types of sound sources within several positions in the laboratory. Fig. 2.4b presents

a schematic plan and a 3D-model of the laboratory frame cage, which illustrates

the coordinate system used to describe object positions (e.g. loudspeaker positions).

Object positions consist of three floating point number values in meters, one for each

axes of the coordinate system. The frame cage installed in the laboratory with the

dimensions L × W × H = 4.26 × 3.756 × 3.497m is where the sensors are installed

and the experiments conducted. Fig. 2.4 illustrates illustrates this frame cage.

The sole optical data source in the audiovisual laboratory, capable of producing

a streams including 3D-data, is the S2000. Thus, the development environment

for the creation of the prototype software is largely determined by the exclusive

SVP2 API for the Intenta sensor. Hence, a 64-Bit installation of Microsoft Windows

8.1 Pro, running Visual Studio 15 2017 and OpenCV 3.4.0 for C++ development

with the SVP2 API, is utilized. Additionally the opencv contrib (see 3.3) module

and OpenGL 4.6.0 (see 3.4) were installed during the curse of development. The

Computer running the software is equipped with a 3.40GHz Intel(R) Core(TM) i7-

4770 CPU, 32GB of RAM and an NVIDIA GeForce GT 740 graphics card. The

10 Intenta sensors installed inside the frame cage are connected to the development

computer via Ethernet. two netowrk switches are utilized to combine the signals

from all 10 sensor connection cables into the single connection cable plugged into the

computer. The netowrk switches are also connected to an Ethernet power adapter

and supply the power from the adapter to the sensors. Static IPs have been configured

for the development computer and every connected S2000. The sensors are installed

at about 2.45 m above the ground with different view angles.
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2. Laboratory, Stereo Sensor and API

(a) This photograph presents the testing area inside the frame cage. All types of laboratory

loudspeakers are visible on the center left. The Genelec 8010 AP, 8020 CPM and 8030

BPM (installed on stands) and below them, the TANNOY Reveal 402 and 502 are visible

in that order, form left to right. Furthermore several S2000 sensors are visible, one

installed directly above the loudspeakers.

(b) The 3D-model on the right gives an overview of the frame cage visible in fig. 2.4a. On

the left a schematic side view (top) and top view (bottom) of the cage illustrate, how

object positions should be measured. The models in this representation are not to scale.

Figure 2.4.: The frame cage inside the audiovisual laboratory. The red, green and

blue arrows represent the dimensions of the cage along the x, y and z

axes, 4.26 × 3.756 × 3.497m. Fig. 2.4a highlights the position of the

axes inside a photograph of the frame cage, while fig. 2.4b illustrates the

axes positions using models. The coordinate origin is the intersection of

the illustrated arrows in the corner of the laboratory. Microphone arrays

positions are highlighted with green quadrangles.
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2.3. Laboratory Hardware Setup

Type Genelec Genelec Genelec TANNOY TANNOY

8010 AP 8020 CPM 8030 BPM Reveal 402 Reveal 502

Quantity 2 8 2 2 2

Watt 25 20 40 50 75

Hz 74 - 20000 66 - 20000 58 - 20000 56 - 48000 49 - 43000

Length (mm) 116 142 178 212 238

Width (mm) 121 151 189 147 184

Height (mm) 180 227 284 240 300

Table 2.1.: Technical specifications of the laboratory loudspeakers. Addopted and

modified from [REK18]
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3. Fundamental 2D and 3D Processing Concepts

and Libraries

In this chapter the concepts and libraries necessary for the development of the object

localization and representation, based on point clouds, are described. Methods for

processing 2D-images and 3D point clouds are considered and combined in 3.1, 3.2

and 3.3. The visualization tools for 3D-models with point clouds and other 3D-

geometry is explained in 3.4. 3D-model interchange file formats are introduced in

3.5. Lastly, 3.6 explains a transformation method which synchronizes 3D-models

such as 3D point clouds with a reference coordinate system.

3.1. Principles of Optical Localization from 2D to 3D

Object localization through image processing is a demanded in many research areas,

such as media retrieval, robotics, virtual reality and the development of surveillance

systems. To find object positions inside 2D-images several algorithms exist. Such

algorithms rely on feature extraction operations applied to the image, inside of which

objects are located. Binarization techniques similar to the described one in [SP00],

and edge detection algorithms like canny edge (described in [Can83]) are used in

feature detection. Based features inside an image, which is being searched for an

object, characteristics of the object are compared to the image. The Surf-Algorithm

[GDP10] is a popular detection algorithm, which uses these principles. It is capable

of locating a reference image inside an images, distorted by perspective. In controlled

environments optical markers simplify the detection of objects. These markers are de-

signed to be easily and robustly recognizable by simple feature detection algorithms.

One type of such optical markers is discussed in greater detail in 3.3.2.

Apart form localization within 2D-images, stereo camera systems enable 3D-

position estimation through triangulation. Similar to human two eyed vision, two

cameras, installed at a specified distance to each other, record parallel images in

stereo vision systems. The cameras of the Intenta S2000 (see fig. 2.1) are an example

for a conventional stereo vision camera setup. The object positions on 2D-images

is recorded side by side, similar to human, two eyed, vision, and the distance value

between the cameras enable the calculation of distance to the stereo camera as de-

scribed in [MV08]. Since the precise calculation of 3D-positions depends on accurate

2D-location detection, the S2000 sensor calibrates its wide angle camera images (see
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3.1. Principles of Optical Localization from 2D to 3D

(a) The image on the left is the sensors view.

On the right side a shadow like section,

on the floor, and missing parts on the

back side of the chair, illustrate stereo

sensor artifacts. The brightness value of

vertices in the point cloud is represented

in yellow and blue. The black areas do

not contain vertices.

(b) A schematic sensor view towards an ex-

ample setting. The light green line high-

lights the section of the sensors view,

which is further explained in fig. 3.1c

and results in the point cloud vertices

depicted in fig. 3.1d.

(c) A side view towards the setting illus-

trated in fig. 3.1b. The light green line

highlights the visibility, to the sensor,

and is visible for the sensor perspective

in fig. 3.1b. The gray areas are invisible

to the sensor cameras.

(d) The point cloud section corresponding to

fig. 3.1c. Only the sections of objects,

visible to the sensor cameras (as in fig.

3.1b) are represented in the point cloud.

Significant parts of objects are lost and

lead to misrepresentation.

Figure 3.1.: The technical limitations of point clouds from optical stereo camera

sensors. Fig. 3.1a presents an example of characteristic artifacts in

stereo sensor point clouds. In fig. 3.1b, 3.1c and 3.1d a schematic

explanation for stereo sensor point cloud computation, explaining the

artifact, is illustrated.
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3. Fundamental 2D and 3D Processing Concepts and Libraries

fig. 2.2b). The distortion caused by the wide angle lens, as visible in fig. 2.2a, would

otherwise not allow the triangulation of accurate 3D-positions.

By applying the distance triangulation to every detected point, which occurs in

both stereo images, a point cloud is calculated by the S2000. A more popular 3D

point cloud sensor based on stereo cameras is the Microsoft Kinect, which uses an

infrared laser (unlike the S2000) emitter to project point patterns into the room

for more effective stereo point matching. Research about the Kinect shows, that

the accuracy of distance estimations decreases noticeable with the distance from the

sensor. At 5 m distance, 4 cm of random error occur. [Kho11]

Points in 3D-space, inside a point cloud, are also called vertices, like 3D-positions

connected to complex geometry (see 3.4.2). Apart from technical limitations con-

cerning the accuracy, stereo sensor point clouds localize only vertices originating

from the pixels within the stereo camera images (as previously described). This

results in characteristic artifacts, blank spots within the 3D-model, created based on

point cloud data. Fig. 3.1 illustrates this problem. The two cameras of a stereo

sensor have very similar views as visible in fig. 2.2. One of the camera images is used

to assign brightness values to the vertices as described above and is considered the

sensors main view towards the recorded scene. Fig. 3.1a presents such a main view

of the sensor and blank areas within the point cloud from the same sensor as they

are visible from perspectives other than the main views. A hypothetical main view

is depicted in fig. 3.1b and only a slice of its resulting point cloud (marked in light

green) is illustrated in fig. 3.1d. The three example objects, a ball, a chair and a

table, appear misrepresented, when compared to the schematic side view of objects

and sensor in fig. 3.1c. Visible in this side view, are the objects as, ideally, they

should be described in any recorded 3D-model of the room including point clouds.

However, only the object parts visible to the sensor (highlighted in light green in fig.

3.1c) are presented in the point cloud. Notice, that potentially undesired objects,

like the walls of a room will be represented in point clouds as illustrated in fig. 3.1d.

For the localization of objects, based on point cloud data, this means, that not the

actual object position, but rather the position of object parts, visible within the

sensors view, is directly extractable form point clouds. Point clouds, like images,

do not contain information about which parts of them represent a specific object.

The mapping from vertex to represented object must be generated with additional

algorithms, similar to object detection and localization in 2D-images. However, even

if 2D-image algorithms for object localization are utilized, with precalculated point

clouds associated to the 2D-images, mapping of 2D-positions to 3D-space is greatly

simplified.
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3.2. Localizing Objects within Point Clouds

As described in 3.1 vertices within a point cloud are not grouped into objects and simi-

lar to 2D-images point clouds usually contain background information like symbolized

by the room and primarily its walls in fig. 3.1. Additionally stereo sensors usually

dislocate a few vertices, which than appear to be in random positions within the point

cloud data. A common tool for to overcome the mentioned problems and further

analyze point cloud data is the Point Cloud Library, PCL.1 As the name suggests the

open source project, PCL was created for processing point clouds. Filtering points,

reconstructing surfaces and object shapes or the creation of Range images based on

point clouds, the library features algorithms for a wide range of operations based on

point cloud data. PCL is implemented as a C++ library with full support for the

Robot Operating System, ROS. It is commonly used in robots, which utilize point

cloud sensors to analyze their environment. To keep the implementation of point

cloud passing algorithms compact, PCL uses a processing pipeline. [RC11]

The pipeline interface of PCL (as described in [RC11]) is structured in the following

matter:

1. Creation of a processing Object such as filters, feature estimation, surface

reconstruction or segmentation.

2. Definition of the input cloud.

3. Configuration of various parameters.

4. Calling compute, filter, segment or similar functions to create the output.

However, the complexity of point cloud library and its abilities far exceed the

requirements for the creation of a prototype software for object localization from 3D

point clouds. The data structure native to PCL is not supported by the current

Intenta SVP2 API available for development. Thus, the conversion of point cloud

vertices into the PCL structure must be implemented to utilize the library on live

streams from the sensor. Such a self implemented conversion would require testing

against non modified point cloud data, to avoid failures within conversion. Hence,

only after the implementation of a PCL free prototype software for the S2000 (to test

against), potentially arising problems within a PCL based software (for the S2000)

could be found. Alternatively a point cloud could be exported into the PCD (Point

Cloud Data) file format native to PCL, but this would hinder an effective prototype

software development process, as no direct, quick, live testing of scenario changes

would be possible.

1Point Cloud Library is well documented at http://pointclouds.org/documentation/
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3. Fundamental 2D and 3D Processing Concepts and Libraries

(a) An Empty Room

Setting

(b) A Room with

Objects

(c) Point Cloud of

3.2a

(d) Point Cloud of

3.2b

(e) Mask from 3.2a

Vertex Areas

(f) The Vertex Areas

from 3.2b

(g) Mask from 3.2e

Applied to 3.2f

(h) Resulting Point

Cloud after 3.2g

(i) Point Cloud of

3.2b with Noise

(j) Mask from 3.2e

Applied to 3.2i

(k) Density Filter

Applied to 3.2j

(l) Resulting Point

Cloud after 3.2k

Figure 3.2.: The concept of masks and density filters for the localization in point

clouds is illustrated in this figure. Similar to fig. 3.1 a 2D-section of

example point clouds is schematically illustrated. Highlighted in light

green are areas containing unmasked and unfiltered point cloud vertices.

Areas highlighted in red are masks and filters, which mark where vertices

are removed. Fig. 3.2a, 3.2c and 3.2e illustrate mask creation. In fig.

3.2b, 3.2d and 3.2f the primary point cloud is created. Most remaining

subfigures illustrated how masks and filters are applied.

14



3.2. Localizing Objects within Point Clouds

A simplified approach to the localization of objects within the point cloud is to

separate the cloud into subareas which are than further analyzed. This has similarities

to the first step of the You Only Look Once approach for detecting objects in 2D-

images (presented in [RDGF16]), where the classification of subareas, created by a

2D-grid, is used to determine more advanced bounding boxes. While 2D-images are

divided into squared subareas by 2D-grids, the vertices of a 3D point cloud are divided

into cubed subareas by 3D-grids. Nevertheless, in order to simplify the illustration

in the schematic example fig. 3.2, the 3D-cubes are symbolized by squares. Small

3D-subareas are desirable, as they increase the resolution of positions retrieved from

the point cloud. To remove background objects from point clouds a mask is utilized.

As illustrated in fig. 3.2a, the optical sensor has to record a point cloud of the empty

environment. Provided the environment does not change, the sensor position and

orientation remains the same, the point cloud of the environment (see fig 3.2c) is

used to create a list of point cloud subareas which will serve as a valid mask. Fig.

3.2e highlights all the subareas of the point cloud, which are part of the mask in red.

Once one such mask has been created it is sufficient for multiple point clouds until the

environment or the sensor orientation changes. Objects like the ball and chair inside

fig. 3.2b are then recorded by the sensor. As explained in 3.1 and illustrated in fig.

3.1 the resulting point cloud (fig. 3.2d) contains only partial representations of the

objects and the environment. By removing vertices in previously masked subareas

from all the subareas containing vertices (fig. 3.2f), as illustrated in fig. 3.2g, the

resulting point cloud is theoretically reduced to the partial object representations it

included before (see fig. 3.2h). However, not all vertex positions within point clouds

are not necessarily located accurately. It is important to determine sufficiently big

subarea size to handle vertex displacements. Apart from minor locating errors, which

most probably still fall within a masked subarea, a few vertices appear randomly

displaced in real point cloud recordings. Such displaced points are referred to as noise.

A more realistic point cloud corresponding to the setting in fig. 3.2b is illustrated in

fig. 3.2i. As illustrated in fig. 3.2j, even a small amount of noise leads to multiple

undesired additional subareas of the point cloud, which are not covered by the mask.

Consequently a density filter is introduced to remove the noise containing areas.

Such a filter removes all the subareas containing less then an adjustable number of

vertices. The example in fig. 3.2k illustrates, how a density filter removes all subareas

containing less then 2 vertices additionally to the subareas removed by mask. Fig.

3.2j illustrates the remaining vertices of the point cloud visualized in fig. 3.2i, after

both, mask and density filter, have been applied. Due to an uneven distribution of

density within the point cloud, depending on suffice distance and orientation towards

the sensor, low density areas are stronger effected by density filters. Notice that

information from the low density parts of the chair in the center of fig. 3.2j is

lost, compared to the unfiltered idealized example in fig. 3.2h. In the creation of
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the prototype software for object localization from 3D point clouds, it is assumed, all

vertex containing subareas are individual objects. Thus, fig. 3.2k contains six objects,

highlighted in green. Further development into a method, which does not split large

objects, is possible. Nevertheless complex PCL solutions are to be considered as well,

if the prototype performance is unable to satisfy required accuracy. Apart from 3D

vertex position analysis, the image assigning brightness values to the vertices holds

enough information to perform 2D-image detection and localizing algorithms. The

2D-positions are then mapped into the point cloud along with brightness values. Since

the Intenta provides a sensor connection example containing OpenCV, the computer

vision library is used for image analysis in prototype development.

3.3. Localizing Markers within the 2D Image of the Point

Cloud Texture in OpenCV

The Multisensorconnection Demo for the S2000 (see 2.2) provides sensor image visu-

alization with OpenCV. Among the images visualized by the Multisensorconnection

Demo is the calibrated gray-scale image from left stereo sensor camera, the point

cloud texture. As described in 2.1, 2D-coordinates from this texture image are

applied to the point cloud image in order to retrieve the 3D-coordinates. In this

section OpenCV and the ArUco module (see 3.3.2) for the library are introduced as

means to extracting 3D texture image coordinates.

3.3.1. Fundamentals of the OpenCV Library

OpenCV is a popular computer vision library with a high range of functionality,

including basic image processing functions and algorithms for tasks such as feature

matching or face detection[PBKE12]. The OpenCV core module provides the base

of the library. It includes arithmetic functions and data structures, and is only

one of many modules included in OpenCV. Other common modulus include user

interface functions, image reading and writing tools, feature detectors, calibration

tools, object detection and more. Furthermore optional modules may be added to

the set of standard modules, which are provided within OpenCV installations. One

of the repositories for such additional modules is called opencv contrib and contains

the ArUco module which is further described in section 3.3.2. [Lag14]

Within OpenCV several data types are defined. To store position the CvPoint

types are used. These structures contain two to three members (x,y and optionally

z) of integer or floating point types. Same OpenCV types give hints to the number of

members and member types in their names (e.g. cv::point2f stores its position into

two float members). CvSize types are similar to CvPoint, however there members

are called width and height and store size as the name suggests. CvRect combines
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OpenCV

both CvPoint and CvSize to save the position and size of a rectangle. The CvScalar

type holds a maximum of four values with double precision. [BK08, p. 31]

The OpenCV Matrix

Matrices are one of the fundamental data types in OpenCV. They vary in size (rows

and columns) and are utilized to store image data. An important property of cv::Mat

is the ability to define the data type contained within the matrix on construction.

This also allows types capable of storing multiple channels to be used within the

matrix and thus, the representation of RGB color values. Matrices with one row

or column are used to represent vectors, as there is no additional types for such

vectors in OpenCV. Internally cv::Mat stores its content using a data array, which

is interpreted according to the values of width, height and other header settings.

Matrices can be created with cvCreateMat(), or copied using cvCloneMat(). [BK08,

p. 33-34] Documentation and further details about the cv::Mat are found in the book

Learning OpenCV: Computer Vision with the OpenCV Library [BK08].

3.3.2. Marker Detection and Localization with ArUco

Camera based augmented reality applications require algorithms, that estimate the

camera position. This is needed to properly place a model of the world on top of the

image recorded by the camera. Through this model the illusion of placing virtual

objects within the real world (as recorded by the camera) becomes possible. The

ArUco library (a module developed for OpenCV) was created and optimized to for

such tasks. To calculate the camera position and mark the areas, which can be utilized

to position virtual objects, ArUco uses fiducial markers. These markers consist of

black and white squares, which are interpreted as binary values. Each combination of

binary values is in turn mapped to the identification value of the marker. To simplify

and accelerate marker tracking, a border of black squares surrounds the variable

section of every code. The marker structure is illustrated in fig. 3.3. An advantage

of ArUco markers, in comparison to other fiducial markers is, that the existing binary

values used to determine the marker index have a maximized hamming distance. For

multiple sizes of ArUco markers an algorithm for generating marker dictionaries cal-

culates marker patterns, which are distinctive (due to maximized hamming distance).

This reduces the probability of falsely assigned marker indices. Rotated markers are

likewise taken into account. This results in the stable tracking of markers and their

rotation. [GJMSMCMJ14]

ArUco markers are independent of color channels and convey information about the

position and orientation of themselves or the objects which they identify. Therefore

utilizing the ArUco markers may has benefits for tasks other than the creation of

virtual reality.
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(a) Seven ArUco markers

of different dictionary

sizes. The marker in the

center has a size of 6×6

squares encoding its id.

(b) Removing the per-

spective distortion

of a marker and

binarizing it to prepare

bit-extraction.

(c) Extracting the bits of in-

formation encoded into

the ArUco marker.

Figure 3.3.: Fiducial markers of the ArUco library and the extraction of marker

values are visualized. Images have been adopted/modified from https:

//sourceforge.net/projects/aruco/.

Once the ArUco module has been set up with OpenCV, multiple markers

within on image can be detected with the function detectMarkers(). It takes

the arguments image (of type cv::Mat), dictionary (of type aruco::Dictionary),

corners (a vector of Point2f), ids (a vector of integer), detectorParams (of type

aruco::DetectorParameters) and rejected (also a vector of Point2f). The argument

dictionary defines the size (see fig. 3.3a) and number of markers, which are part of

the dictionary, which the function used to find markers. If the dictionary does not

match the one of the markers which are visible within the image, markers will not be

located, because the step of bit extraction (see fig. 3.3c) in marker analysation fails.

The argument corners contains the positions of all four corners of a marker. While

the rejected argument is similar, it contains the corners of markers which have been

rejected by the algorithm. The ids argument stores the dictionary index of the found

marker in corresponding order to the corners argument.

3.4. Visualization of 3D-Models

For the visualization of 3D-models, graphic libraries are utilized. Within the Mi-

crosoft environment Direct3D is the native graphics library, it does not support other

operating systems. Next to Direct3D, OpenGL is the most widely accepted API for
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graphic visualization. It is often applied in the implementation of research projects.

The OpenGL shading language is platform independent. [Che08, p. 253,284,336]

Since the audiovisual laboratory is not limited to Microsoft Windows in the choice

of its operating systems, OpenGL will be of benefit in case Intentas SVP API becomes

platform independent in the future. OpenGL does not include windowing systems

or methods to receive user inputs directly in order to keep it operating system inde-

pendent. The ability to visualize complex geometric objects is not part of OpenGL,

but basic geometric primitives (see 3.4.2) can be combined to create complicated 3D-

models. [SG09]The data types included into OpenGL ensure that defined type sizes

do not vary between platforms, however many can be substitute with non OpenGL

types if platform portability is not required for an application.2 FreeGLUT is a

common platform independent windowing system for OpenGL [SG09]. This thesis

documents theory and implementation for OpenGL version 3.6.0.

3.4.1. Positioning, Scaling and Rotating of 3D-models with OpenGL

OpenGL utilizes matrix operations to position, scale and rotate objects. Matrices

have the ability to store such operations, which are referred to as transformations.

Essentially the multiplication of a matrix and a vector, applies the transformation to

the resulting vector, which replaces the initial vector. This is covert in more detail

later in this subsection. The model view matrix is a 4 × 4 matrix used to describe

transformations. [Bus03]

Theorem 3.4.1 (Buss, 2003). ”A transformation on R2 is any mapping A :

R2 → R2. That is, each point x ∈ R2 is mapped to a unique point, A(x), also in

R2.”

The transformations represented within the model view matrix are designed to

map points x ∈ R3 into R3. However, in order to create not only linear but also affine

transformations when projected into R3, the transformation operations in OpenGL

take place inside a 4× 4 matrix and thus in R4.

2Information found at https://www.khronos.org/opengl/wiki/OpenGL_Type
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Theorem 3.4.2 (Buss, 2003). ”Let A be a transformation. A is a linear trans-

formation provided the following two conditions hold:

1. For all α ∈ R and all x ∈ R2,A(αx) = αA(x).

2. For all x, y ∈ R2 , A(x+ y) = A(x) +A(y).

Note that A(0) = 0 for any linear transformation A. This follows from condition

1 with α = 0.”

To understand the concept of affine transformations, the group of linear trans-

formations should be understood first. The ability of a transformation to perform

a translation (as described later in this section), disqualifies a transformation from

being identifiable as linear. A simple translation is performed by adding a vector to

the points that are transformed.

Theorem 3.4.3 (Buss, 2003). ”A transformation A is affine provided it can be

written as the composition of a translation and a linear transformation. That

is, provided it can be written in the form A = TuB for some u ∈ R2 and some

linear transformation B.

In other words, a transformation A is affine if it equals

A(x) = B(x) + u

with B a linear transformation and u a point. Because it is permitted that u = 0,

every linear transformation is affine. However, not every affine transformation

is linear. In particular, if u ̸= 0, then transformation A is not linear since it

does not map 0 to 0.”

Affine transformations are among the most fundamental mathematical concepts in

computer graphics. In order to display a 3D-scene on the 2D-canvas OpenGL utilizes

a rendering pipeline which involves multiple affine transformations. Creating a 3D-

model out of vertices is only the first step of OpenGLs rendering pipeline. Displaying

the resulting 2D-image is the last step. [Bus03]

Further details about the rendering pipeline and affine transformations can be found

in 3D Computer Graphics: A Mathematical Introduction with OpenGL [Bus03].

Matrix Vector Product

As mentioned before the transformations stored inside the model view matrix can be

applied to a vertex through multiplication. Usually a transformation is applied to
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every vertex of a group which is interpreted as one geometric primitive (see 3.4.2). To

calculate the matrix product with a 4×4 matrix, a four dimensional vector has to be

defined. The x, y, and z values of the vector are adopted from the represented vertex,

while the forth value is set to 1. For multiplicative operations 1 is the neutral element

and therefore acts as a placeholder. Since only 3D-transformations are desired the

resulting vector (the matrix vector product) has to be reduced from a four dimensional

vector to a 3D-vertex again. For linear transformations the forth dimension can be

ignored since it remains unchanged.

The computation of the matrix vector product is defined as follows:
a b c d

e f g h

i j k l

m n o p

 ·


x

y

z

1

 =


a · x+ b · y + c · z + d · 1
e · x+ f · y + g · z + h · 1
i · x+ j · y + k · z + l · 1
m · x+ n · y + o · z + p · 1


Scaling

Changing the size of objects consisting of multiple vertices is achieved by multiplying

every dimension of the vertices with the same value s. Setting s > 1 results in the

object being scaled up, s < 1 shrinks the object and s = 1 has no effect. Such a scaling

process is illustrated in fig. 3.7c in section 3.6. If different values are multiplied to

each dimension the shape of the scaled object may be flattened or stretched as a result,

however the transformation is linear in any case. OpenGL creates a transformation

matrix which results in the matrix vector product mirroring the described operation

of multiplying a scaling value to all three relevant dimensions.
sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

 ·


x

y

z

1

 =


sx · x
sy · y
sz · z
1


Rotation

The Matrix for the rotation around an axis u is defined as follows in the book 3D

Computer Graphics: A Mathematical Introduction with OpenGL [Bus03]. The axis u

is a vector that is automatically normalized by OpenGL when the rotation function

is called with a non unit vector.

Rθ,u =


(1− c)u2

1 + c (1− c)u1u2 − su3 (1− c)u1u3 + su2 0

(1− c)u1u2 + su3 (1− c)u2
2 + c (1− c)u2u3 − su1 0

(1− c)u1u3 − su2 (1− c)u2u3 + su1 (1− c)u2
3 + c 0

0 0 0 1


where: c = cos θ ; s = sin θ and u = u

||u||
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This enables OpenGL to define matrices for rotations in every possible direction

without the need for combining rotation matrices by computing a matrix matrix

product. An example rotation process is illustrated in fig. 3.7b in section 3.6. Similar

to scaling rotations could be performed using only 3D-matrices, both transformations

are linear.

Translation

A vertex v may be translated by adding a vector u. As illustrated with multiple

vertices in 3.7a in section 3.6, where e.g. the green arrows is equal to u and B0 =

v. Translations are by definition no linear transformations but nevertheless affine.

The fourth dimension of the model view matrix is used avoid the additional vector

addition, which would be required to perform translations with 3D-matrices and

vectors. 
1 0 0 u1

0 1 0 u2

0 0 1 u3

0 0 0 1

 ·


v1
v2
v3
1

 =


v1 + u1 · 1
v2 + u2 · 1
v3 + u3 · 1

1

 =


r1
r2
r3
r4


Note that the matrix matrix product as described in the next paragraph may cause

changes in the values of the last row of a transformation matrix when non linear

transformations are involved. Consequently the fourth value of the vector r resulting

from the matrix vector product may not always equal 1. If r4 ̸= 1 the conversion of

four dimensional vector to 3D-vertex must be executed as follows:

vtrans =
[
r1
r4

r2
r4

r3
r4

]
Matrix Matrix product

So far the benefit of realizing OpenGLs transformations with matrix operations is

not obvious. Scaling and translating can as described in the according paragraphs be

calculated without matrices, however for each vertex every transformation world need

to be applied to one by one. For n vertices and k transformations the complexity

of the algorithm would be O(n × k) and therefore highly dependent on k. This

situation is improved by utilizing matrices to store the transformation information.

Multiplying various transformation matrices results in a single transformation matrix,

which still moves all vertices as if they would have been transformed step by step

using the original transformations. Thus, only k matrix multiplications reduce the

complexity (of performing k transformations on n vertices) to O(n) since effectively

only one transformation has to be applied per vertex now.
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The Matrix Stack

OpenGL always uses the current model view matrix to perform transformations on

the vertices of geometry objects. To alter the transformation for individual objects,

matrix stats can be saved using a stack as illustrated in line 10. Changes applied

to the model view matrix can be undone by resetting the matrix to the saved states

present in the stack. This is done in line 17.

1 void d i sp l ay ( ){
2 drawBackground ( ) ;

3

4 g lLoadIdent i ty ( ) ; // load i d e n t i t y matrix M:=I

5 g l S c a l e f ( 1 . 2 f , 1 . 2 f , 1 . 2 f ) ; // matrix mu l t i p l y M:=M∗S
6

7 g lCo l o r 3 f ( 0 . 0 f , 0 . 0 f , 0 . 0 f ) ; // use b l a c k co l o r

8 drawExample ( ) ; // draw o b j e c t

9

10 glPushMatrix ( ) ; // save matrix X:=M

11

12 g lCo l o r 3 f ( 1 . 0 f , 0 . 0 f , 0 . 0 f ) ; // use red co l o r

13 g l S c a l e f ( 0 . 5 f , 0 . 5 f , 0 . 5 f ) ; // matrix mu l t i p l y M:=M∗S
14 g lT r an s l a t e f ( 0 . 3 f , 0 . 3 f , 0 . 0 f ) ; // matrix mu l t i p l y M:=M∗T
15 drawExample ( ) ; // draw o b j e c t

16

17 glPopMatrix ( ) ; // r e s e t matrix to M:=X

18

19 g lCo l o r 3 f ( 0 . 0 f , 0 . 0 f , 1 . 0 f ) ; // use b l u e co l o r

20 g lRota t e f ( 33 . 0 f , 0 . 0 f , 0 . 0 f , 1 . 0 f ) ; // matrix mu l t i p l y M:=M∗R
21 drawExample ( ) ; // draw o b j e c t

22

23 g lF lush ( ) ;

24 }

This OpenGL code example draws the same object three times in three different

colors, as presented in fig. 3.4. All transformations applied to the object are provided

by the model view matrix M . The OpenGL functions for scaling, translating and

rotating

Extracting Transformed 3D-Models from OpenGL

Understanding the model view matrix is critical for the export of transformations

(as visualized through OpenGL). The library does not allow the direct extraction

of individual transformed vertex positions unless they are projected onto the 2D-

canvas used to visualize them. Thus, to extract and store the transformed vertex

positions in 3D-space, transformations must be calculated separately for the purpose

of storing them. Luckily OpenGL provides a method for extracting transformation

matrices. Based on the extracted matrix and the non transformed vertices, the

entire transformed 3D-model is calculated and then extracted. With the OpenGL
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Figure 3.4.: The output of an OpenGL program, that illustrates the effect of a set of

matrix operations: The black square shows the reference position, while

the red square is scaled and translated. The blue square is not scaled

and not translated, but rotated.

function call glGetFloatv(GL MODELVIEW MATRIX, ptr) a pointer to the matrix

array (ptr) containing the model view matrix is retrieved. The array representing the

4× 4 matrix contains 16 GLfloat values. The values of the matrix are listed column-

wise inside the matrix, the left most matrix column reaching from array index 0 (at

the top) to 3 (at the bottom). The right most matrix column consists of the last

array values, with the indices from 12 (at the top) to 15 (at the bottom).

Since OpenGL utilizes graphics hardware to speed up matrix computations, per-

forming an unnecessary amount of matrix operations externally with CPU computa-

tions slows down an application needlessly.

3.4.2. Visualization of 3D-Model Vertices

Once the windowing system FreeGLUT has been prepared and the display function

has been set, vertices can continuously be drawn onto the canvas (the area inside the

FreeGLUT window). Details on the implementation of FreeGLUT are covered in the

OpenGL Programming Guide [SG09]. To start the interactive OpenGL animation

the glutMainLoop() has to be executed. It repeatedly calls the display function which

defines the geometric objects drawn by OpenGL.

The basic geometric primitives in OpenGL 4.6 are constructed out of multiple vertices

in between glBegin() and glEnd() [SG09]. To specify the type of primitive that will

be constructed out of the vertices, glBegin() expects an argument of type GLenum3.

The possible GLenum values and therefore types of geometric primitives include,

among others, the following:

3Information found at http://docs.gl/gl3/glBegin
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3.4. Visualization of 3D-Models

(a) GL POINTS (b) GL LINES (c) GL LINE STRIP (d) GL TRIANGLES

Figure 3.5.: Examples for basic geometric primitives in OpenGL

GL POINTS: Vertices are visualized as a dot or point on the canvas (see fig. 3.5a).

The size of these points can be altered with the function glPointSize() which takes a

GLfloat type as an argument to replace the default value of 1. GL POINTS is ideal

to visualize raw point clouds.

GL LINES: An even number of vertices is visualized pairwise (see fig. 3.5b). Every

vertex is depending on its predecessor interpreted as either the beginning or the end

of a line. The first vertex always defines the starting point of the first line.

GL LINE STRIP: Draws a line connecting the first vertex to the last. All of the

intermediate vertices define the way according to their order (see fig. 3.5c).

GL TRIANGLES: Groups of three vertices are interpreted as triangles similar to

the interpretation of vertex pairs in GL LINES. OpenGL colors the whole area of the

triangle (see fig. 3.5d). Such triangles may be combined to create complex geometry.

1 void drawExample ( )

2 {
3 glLineWidth ( 1 0 ) ; g lPo in tS i z e ( 1 0 ) ;

4 f loat v [ 1 8 ] = { −0.5 ,−0.5 ,0 .0 , −0 .5 , 0 . 5 , 0 . 0 , 0 . 5 , 0 . 5 , 0 . 0 ,

5 0 . 5 , 0 . 0 , 0 . 0 , −0.3 ,−0.5 ,0 .0 , 0 . 5 , −0 . 5 , 0 . 0} ;
6 g lBegin ( GL POINTS | GL LINES | GL LINE STRIP | GL TRIANGLES ) ;

7 for ( int i =0; i <18; i +=3){
8 g lVer t ex3 f ( v [ i +0] , v [ i +1] , v [ i +2 ] ) ; // output each v e r t e x

9 }
10 glEnd ( ) ;

11 }

This algorithm produces the visuals shown in fig. 3.5 depending on the primitive

that is selected (in the form of the according GLenum value in line 6) for the glBegin

function.
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3.5. The Representation of 3D Structures in Files

Many file formats for the representation of 3D-models and structures exist. However,

when searching for a wide spread, easy to implement, exchange format, many such 3D

file formats disqualify themselves. X3D contains unnecessary additional information,

such as sounds, lights or web links. DXF supports triangle structures in 3D, but

is mainly for 2D-drawings. 3DS has a limited number of vertices and polygons and

contains unnecessary additional information as well. SLC contains only several 2D-

slices of 3D-objects. SAT has a complicated topological data structure. And also

STEP is a rather complex format. PLY was created to handle data originating form

3D-scanners. And lastly, with a simpler file structure than PLY, OBJ is a wide

spread and easy to implement 3D-model file format. Unlike the other formats it does

not contain unneeded additional data. OBJ suits the needs for an exchange format.

[HL09]

The OBJ-file-format is an open ASCII-based format for representing 3D-geometry.

It was initially developed for the program Advanced Visualizer by the company

Wavefront Technologies. OBJ is a popular format, because it is easy to handle,

since the ASCII form is human readable, and it has been adopted as a geometry

import and export file type by multiple 3D-geometry editors, such as Blender4 or

Maya5 Blender is an open source application with a very high range of capabilities,

from serving as a modeling tool for simple research tasks to the creation of highly

realistic virtual environments [KKK17]. Information inside of OBJ-files is stored in

the form of several types of elements. Although the format is capable of storing

textures, curves and other complex information in such elements, its structure allows

to read and write files indifferent of many types elements, if they are unknown to

the parser. This is possible because the elements of an OBJ-File are separated line-

wise, with the first characters on each line identifying the type of element. Lines

beginning with characters which can not be mapped to any element type are ignored.

The information stored within elements is separated from the identifying characters

by a space character; multiple parts of a single element are likewise separated by

space characters. Basic elements of OBJ-files are identified by a single character.

Such elements include, vertices, lines, faces, object elements and comments. [Pip03,

p. 61-65]

4Blender is an open source 3D creation suite. See https://www.blender.org/
5Find more about the 3D computer graphics application Autodesk Maya at https://www.autodesk.

eu/products/maya/overview
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3.5. The Representation of 3D Structures in Files

1 # Example OBJ

2 v −0.5 0 1

3 v −0.5 0 0

4 v −1 0 0 .5

5 v 0 0 0 .5

6 v 0 0 1

7 v 0 1 0

8 v 1 0 0

9 v 0 0 −1

10 o l i n e s

11 l 1 2

12 l 3 4

13 o f a c e s

14 f 4 5 6

15 f 2 4 7 8

The example of an OBJ-file, given above, includes five types of elements. The

first line starting with the ”#”-symbol is a comment element, its content is meant

for human readers and is ignored by OBJ-file-parsers. Vertex elements (lines 2 to 9)

begin with the character ”v” and are followed by the x, y, and z coordinates of the

vertices they store. Such coordinate values may be in floating point format. The

elements line and face do not contain coordinates directly, they reference the vertex

elements by index. The indices of vertex elements are assigned to them by counting

vertices linewise from the first to the last line of the file. Consequently in this example

the vertex element on line 2 is assigned the vertex index 1. The line element (lines

11 and 12) is identified by the ”l” character and followed by a minimum of two vertex

indices, which determine the coordinates between which a line is defined. Fig. 3.6a

illustrates two such lines in green. Face elements (lines 14 and 15) are identified by

the ”f” character and require a minimum of three vertex indices to define a polygon.

All points of such polygons must be members of a common plain within 3D-space.

In fig. 3.6a the two polygons defined within the example OBJ-file are illustrated in

blue. Lastly the example OBJ-file includes object elements (lines 10 and 13), these

elements group other elements, such as lines and faces, into objects. An object begins

with the object element line, identified with the character ”o”, and ends with the next

object element or the end of the OBJ-file. Object elements also assign a name to

each object. A benefit of sorting geometric elements inside an OBJ-file into objects,

is that it allows programs to treat objects as separate entities. Fig. 3.6b shows how

OBJ-objects are displayed inside Blender, once the OBJ-file has been imported.

To simplify the interpretation of OBJ-files for a basic OBJ-parser, triangulated

faces should be required for all files excepted by the parser. Inside a triangulated

OBJ-file only the minimal number of three vertex indices is referenced by each face

element. This ensures an unambiguous interpretation of the face, since the order of

vertices which connect into a triangle is interchangeable. Potential orders of more
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(a) The two objects defined in-

side the OBJ-file are col-

ored differently. The object

”lines” is green and consists

of two lines crossing each

other in the x-z-plain. In

blue the object ”faces”, con-

sisting of a quadrangle in the

x-z-plain and a triangle in

the y-z-plain, is illustrated.

(b) On the left side a perspective view of the OBJ-file

is visible. The list on the right side includes the

objects, which have been specified inside the OBJ-

file. The object ”faces” is selected in and can be ma-

nipulated independent of the object ”lines”. Blender

reinterprets the coordinates such that the y and z-

axis are swapped.

Figure 3.6.: The geometric content of a simple OBJ-file: The file includes two objects,

one consisting of two lines and one consisting of two faces. Within the

cartesian coordinate system in fig. 3.6a is illustrated how the OBJ-file is

displayed in theory, while fig. 3.6b shows how the 3D-modeling software

Blender interprets it.
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than three vertices may lead to non convex polygons, which would require further

processing in order to ensure proper visualization of them with graphic libraries

such as OpenGL. Non triangulated OBJ-file can be converted into triangulated files

with export options in 3D-modeling software like Blender. Displaying a warning

to users, who try to read files including non implemented elements, is advisable.

Advanced OBJ-File structures (with texture elements and likewise) include additional

information into elements such as lines and faces, which may cause a basic parser to

malfunction.

3.6. Transforming Point Cloud into Reference Model

Coordinate System

When objects are successfully localized within a point cloud, a model containing

these objects can be created. However, without any reference to the environment

containing the object, the position of a single object reveals no information, because

the origin of the coordinate system is arbitrarily positioned. The origin may not

represent any relevant point in reality. A reference model of the environment must

be created. Such a model must share axes and size with the laboratory specifications

presented in fig. 2.4. Its position, rotation and size relative to the point cloud is

crucial to all measurements recorded inside the point cloud based model. Because of

the difference between size and orientation of the point cloud, when passed into the

model without any adjustments, measurements initially appear randomly set. Thus,

reference model and the model consisting of objects found within the point cloud,

have to be lined up.

In order to define a 3D-coordinate system four points are needed such that three

independent coordinate axes are constructible, represented as vectors. Inside existing

3D-coordinate systems any plain is defined by only two vectors. The size and orien-

tation of these vectors unambiguously define not only positions within the plain, but

also in the third direction. A common example of this is the normal vector. Thus,

to synchronize the position of related existing 3D-Models, only three common points

are sufficient, if no straight line connecting all three points can be constructed. Fig.

3.7 illustrates the theoretical steps of synchronization based on three common points.

The points with the numbers 0, 1 and 2 are used to perform transformations, while

both points with the number 3 illustrate how any additional point behaves when

transformations to the calculated on the basis of only 3 points are executed. The

first point (A0 for group A and B0 for group B in fig. 3.7a) is translated towards

the origins of both common model coordinate systems. This is achieved by moving

all points of each 3D-model (represented by groups A and B in 3.7) along the vector

from A0 or B0 to the coordinate origin.
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(a) Both groups A and B are translated to

share the position origin. Their corre-

sponding points A0 and B0 are illus-

trated to move towards the origin of the

coordinate system.

(b) Group A and group B are individu-

ally rotated towards a similar position.

Points located on the rotational axis

(through the coordinate system origin)

appear unaffected.

(c) Group B is illustrated to be scaled to the

size of group A.

(d) The result of the previous operations;

translation (subfig. 3.7a), rotation (sub-

fig. 3.7b) and scaling (subfig. 3.7c),

shows both groups at a congruent po-

sition.

Figure 3.7.: Three steps of synchronizing the position of identical but displaced and

rescaled point sets: A group of red points (A0 to A3) and a group of green

points (B0 to B3) are manipulated using a set of operations (subfig. 3.7a;

3.7b; 3.7c), which effect each group as a whole. The result is illustrated

in subfig. 3.7d
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In fig. 3.7b the translation of the groups A and B have been performed with the

result, that A0 and B0 are now both at the origin of the coordinate system. To line

up the positions of the points A1 and B1 both groups must at first be rotated in a

fashion that results in the satisfiability of the equation
−−−→
A0A1 · k =

−−−→
B0B1 for k > 0.

Conceptually one of the easiest ways to achieve that, is by rotating both, A1 and B1

onto the positive side of the same coordinate axis. However the same rotation must

also fulfill the satisfiability condition for
−−−→
A0A2 · k =

−−−→
B0B2 for k > 0. Similarly this

can be simplified. To keep the relations between all members within each group, the

points A2 and B2 are not to be forced onto another axis. The rotation should put

both points onto the same plain, such that within each group the distances between

all points remain the same. This plain must still contain the axis onto which A1 and

B1 are rotated and a second coordinate axis. Only rotations that move A2 and B2

onto the positive part of the second coordinate are allowed. In fig. 3.7b the plain,

onto which the points are rotated, is the x-z-plain.

Finally the remaining positional differences between the points are resolved by

scaling both or just one group of points. In fig. 3.7c group B is scaled up to the size

of group A. The transformations result in congruent groups A and B as illustrated

in fig. 3.7d.

All of the transformations to archive such results can be implemented using

OpenGL if the values needed to set up the transformation matrices (see 3.4.1) can

be computed. The first step, translating the groups such that A0 and B0 are moved

to the common origin, requires only negating the values of the coordinates of A0 and

B0. Translating the according groups by these values leads to the desired result. In

the following paragraphs two methods, of computing turn angles and axes for the

rotation during point synchronization, are covered.

Defining The Rotation Target

With arbitrarily oriented groups of points, only sharing a common origin, both of

the later methods for calculating rotation angles and axes require setting a target. It

defines where to the reference points are rotated along with the rest of the groups they

belong to, when the desired transformation is applied. In fig. 3.8 the target positions

are the green points d, e and f . The positions of the points a, b and c in the same fig.

represent three points of a non synchronized group before rotation. As shown before,

if a rotation in 3D-space is defined such that two points reach their target positions

(and there is no straight line connecting them both to the pivot point), the rotation

results in an unambiguous position of all points transformed with them.

To set the target position e for point b, the length of
−→
ab is used as a coordinate

value of e while the remaining coordinates are set to zero. Since a = d = (0; 0; 0),

the distance of b to the coordinate origin is ||b|| = ||
−→
ab||. The position of e is defined:
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Figure 3.8.: Two groups of 3 points are depicted inside a 3D-coordinate system (group

1: a, b, c; group 2: d, e, f): The distances and angular relations between

the points within each group are identical. The points a and d are in

the same position and if they are used as a pivot for c and b, they could

rotate them into the position of e and f .

e = (||b||; 0; 0)

The rotation of b to the position of e can not change the distance of the point

towards the coordinate origin. The definition of e above ensures:

||e|| =
√√

bx
2 + by

2 + bz
2
2

+ 0 + 0 =
√
bx

2 + by
2 + bz

2 = ||b||

The target position f for point c must satisfy two conditions to ensure the point

relations are preserved. The fist condition is again, ||f || = ||c||. The second condition

is to preserve the angle α as illustrated in fig. 3.8. Thus, the angle between
−→
ab and

−→ac must be equal to the angle between
−→
de and

−→
df :

arccos
( −→

ab·−→ac
||
−→
ab||·||−→ac||

)
= α = arccos

( −→
de·

−→
df

||
−→
de||·||

−→
df ||

)
The angle α is calculated using

−→
ab and −→ac so it can be utilized for further compu-

tations. Since e is a point on the x-axis, the angle between
−→
df and the x-aches must

be equal to α. As defined by the unit circle (adopted for 3D-space), a point g such

that,
−→
dg has an angle of α towards the x-axis can be described by:

gx = cos(α) and
√
gy2 + gz2 = sin(α)

Any such point g would have a distance ||g|| = 1 to the origin of the coordinate

system (d) since it is based on the position of a point on the unit circle. To take the
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(a) The pivot line between two points p1 and

p2 in 2D-space. Several example rota-

tions around points of the pivot line are

illustrated with different colors.

(b) Visualized here are
−→
be and

−→
cf as they

can be constructed between group 1 and

group 2, which have been adopted from

fig. 3.8. The vector r⃗ illustrates the

cross product of
−→
be and

−→
cf .

Figure 3.9.: Two concepts: 3.9a shows the position of pivot points in a 2D-system.

3.9b illustrates how a rotational axis is (symbolized by r⃗) is found in

3D-space.

first condition (||f || = ||c||) into account for the definition of f , the sine and cosine

function must be multiplied by the distance f is required to have to d. Consequently

f must be defined such that:

fx = cos(α) · ||c|| and
√
fy

2 + fz
2 = sin(α) · ||c||

To position f on the x-z-plain as illustrated in fig. 3.8, the point can be defined

such that:

f = (cos(α) · ||c||; 0; sin(α) · ||c||)

The One Step Rotation

To perform a rotation, the rotational axis and the angle of the rotation have to be

specified. The rotational axis is represented by a vector r⃗, such that r⃗ · k with k ∈ R
determines every possible point on the rotational axis.

In order to find r⃗, two dimensional space is considered. Figure 3.9a visualizes the

concept of a pivot line. Such a line is infinite and includes every potential pivot

point around which either of the points p1 or p2 can be rotated in order to reach the
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position of the other. The distance of any point on the pivot line ppivot to the points

p1 and p2 is equal.

||−−−−→ppivotp1|| = ||−−−−→ppivotp2||

Thus, the pivot line is perpendicular to the vector −−→p1p2. If the concept is adapted

into 3D-space, all points of equal distance to p1 and p2 form a pivot plain perpendic-

ular to −−→p1p2. Since during the construction of the reference points d, e and f (see 3.8)

the conditions ||e|| = ||b|| and ||f || = ||c|| where considered, the coordinate origin is

among the points of the pivot plain. Thus, no support vector for the construction of

the pivot plain perpendicular to
−→
eb and the other pivot plain perpendicular to

−→
fc is

necessary. The plains are constructed using the normal form:

E1 :
−→
eb ·

x

y

z

 and E2 :
−→
fc ·

x

y

z


The intersection of E1 and E2 is the rotational axis, because it contains the pivot

points shared by both plains. A vector r⃗ on the axis is calculated as the cross product

of both normal vectors:

r⃗ =
−→
eb ×

−→
fc

Fig. 3.9b illustrates the vectors of the equation above. The angle of the rotation

around r⃗ is computed using additional vector calculations.

When a point is rotated around an axis, its possible positions lie on a circular path,

which is located on a plain within 3D-space. Conceptually angles between points on

this path can be derived within the two dimensions of the plain. In fig. 3.9a such

circular paths are illustrated. At the center of each circle lies the pivot point, which

marks the intersection of plain and rotational axis. An isosceles triangle, connecting

pivot point and the points on the circular path, is constructed. To compute θ the

angle between −−−−→ppivotp1 and −−−−→ppivotp2, first the normal form of the plain is constructed:

E3 : r⃗ ·


x

y

z

−−→p1


To find the pivot point on this plain, the corresponding multiple of r⃗ is found by

solving this equation for t:

r⃗ ·
((

t · r⃗
)
−−→p1

)
= 0 ppivot = (t · rx; t · ry; t · rz)

The angle θ, for the appropriate rotation around r⃗ is computed:

θ = arccos
( −−−−−→ppivotp1·−−−−−→ppivotp2
||−−−−−→ppivotp1||·||−−−−−→ppivotp2||

)
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3.6. Transforming Point Cloud into Reference Model Coordinate System

(a) The rotation around r⃗ in a cartesian

coordinate system. Points have been

adopted from fig. 3.8.

(b) The angle γ, which must be determined

when the rotation in fig. 3.10a is com-

pleted. γ is the angle for a rotation

around the x-axis.

Figure 3.10.: The two step rotation method for point synchronization: Fig. 3.10a

shows angle β for the first rotation and fig. 3.10b shows γ, the angle

for the second rotation.

The two Step Rotation

A different approach to rotating two points into their target position, is transform-

ing in two steps. Step 1 transforms all points such that the first point is rotated

into its target position. Step 2 rotates the second point around the axis defined by

the coordinate origin and the first point. For this approach the rotational matrix as

defined for OpenGL (see 3.4.1) is used.

Step 1: As defined before and illustrated in fig. 3.8, the points a and b are

considered to be members of the group that is rotated and the points d and e are

target positions for the rotation. a and d are equal to the origin of the coordinate

system. At first r⃗ is computed for the rotation of b to the position of e. The cross

product between
−→
ab and

−→
de could be computed. However, to minimize point errors

during the implementation
−→
de is substituted with a unit point on the axis where

−→
de

is located. Thus, for e on the x-axis the calculation is:

r⃗ =
−→
ab ×

1

0

0


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As the angle for the rotation around r⃗, β is defined (see fig. 3.9) , it could be

calculated as the angle between
−→
ab and

−→
de, but to minimize point errors

−→
de is likewise

substituted:

β = arccos



−→
ab·


1

0

0



||
−→
ab||·||


1

0

0

||


Step 2: The rotational axis for the second rotation is the coordinate axis on

which the first point is located after the first rotation was applied (see fig. 3.10b).

To apply the first rotation the values calculated in step 1 are utilized to created a

rotational matrix. The second point to rotate (c in fig. 3.10b) is brought into its

starting position for the second rotation using the matrix vector product as specified

for OpenGL (see 3.4.1).

Angle γ for the rotation around the x-axis is calculated:

γ = arctan
(
cy
cz

)
Matching the Scale of Models

When position and orientation of both models match each other (see fig. 3.7c), the

size of the models has to be adjusted to fit each other. This ensures, all points, which

represent the same position in reality, will match between the synchronized models

of reality.

The distances to the coordinate origin of two points located on the same axis

through the origin are sufficient to equalize the models they belong to in size. One

such distance is calculated in the number of instances the other distance can fit inside

it. This value can than be used to rescale a whole group of points (or model). The

scaling value s is calculated:

s = ||
−−−→
A0A1||

||
−−−→
B0B1||

This calculation uses the example points as visible in fig. 3.7c and the calculated

value s can be applied to all three axes of group B to scale it into equal size of group

A as visible in fig. 3.7d.

In order for the method of synchronization above to work, it is assumed, all models

which have already been synchronized, match the relations between spatial position

of points as defined by realty. If model show a distorted version of reality, the above

defined method of synchronization may not work.
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4. Implementation of a Prototype Software for

Object Localization from 3D Point Clouds

This chapter describes the architecture and implementation of the prototype software

for object localization from 3D point clouds. At first a general overview of the

architecture and its context is given in 4.1. The visualization of the point cloud,

including code examples, is explained in 4.2. The files containing 3D-coordinates are

handled as described in 4.3. The sections 4.4 and 4.6 explain localization algorithm

implementations. 4.5 describes the implementation of the calibration algorithm based

on localizations. A summary of all implementations made during this thesis is given

in 4.7.

4.1. Architecture of the Localization Prototype Software

The prototype software is required to have a user interface, create a model of the

frame cage inside the audiovisual laboratory and its content, save an image of the

object setting, and export localized object positions as floating point meter values.

As described in 3.4, OpenGL is capable of visualizing and transforming 3D-models.

Thus, the current version of OpenGL (4.6.0) is used to visualize a 3D-model of the

frame cage, point cloud and highlighted object positions. To locate objects within

the point cloud, the methods described in 3.2 are implemented. The point cloud

texture image (providing the brightness values for the vertices) is utilized to locate

ArUco markers as introduced in 3.3.2. To enable measuring positions according to

the coordinate system illustrated in fig. 2.4, a synchronization of size and orientation

of point cloud model and frame cage model is implemented based on 3.6. Calibration

settings and point cloud masks are saved to files to reduce the efforts of working

with the prototype software. A reduced version of the model displayed with OpenGL

is exported using the OBJ-Format as introduced in 3.5. It contains only the frame

cage model and object position markers. OBJ-files for both, frame cage model and

position markers, must be imported into the prototype software. Thus, they are

interchangeable. The raw positions in floating point meter values are displayed in

the OpenGL UI and exported into exchange-files of the Comma Separated Value

Format, CSV. The point cloud texture image is saved as a JPEG-file using a standard

OpenCV function.
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Figure 4.1.: This flowchart presents the structure of the prototype software for localiz-

ing objects from point clouds. On the left side the adopted structure from

the sensor connection example (see 2.3) is visible. On the right side the

Point Cloud Model, in green, and the OpenGL point cloud visualization,

in blue, have been added. Between Buffer Data Elements from Sensor

and Create List with Image Data Elements from Buffer (center left), the

example code has been modified such that it updates the Point Cloud

Model and starts the OpenGL visualization if it is not running. Be-

fore the OpenCV Image Visualization Window (at the bottom), another

change to the example code has been made. If the loaded image is the

point cloud texture, it is further analyzed with OpenCV to supply the

Point Cloud Model with locations.
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In order to access a constant stream of data from the S2000 sensor, the sensor

connection example program introduce in 2.2 is utilized as the foundation of the

prototype software for object localization from point clouds. Its structure, as vi-

sualized in fig. 2.3, is extended to incorporate the above described functionality

into it. The resulting flowchart and cure structure of the prototype software for

object localization from point clouds is illustrated in fig. 4.1. Most of the additional

functionality is implemented into the Point Cloud Model class (green in 4.1) and in

the OpenGL/GLUT UI section which is responsible for handling the Point Cloud

Model Visualization, Window and Key Command Input user interface as its created

by GLUT (blue in 4.1). These parts of the prototype software are entirely new

code. To connect the Intenta sensor connection example code to the new point cloud

visualization and export tools, and to add functionality in OpenCV, the example code

is most importantly modified by inserting a section which updates the Point Cloud

Model with streamed point cloud data. Since only one GLUT-Window is needed to

display the data of multiple sensors, an OpenGL/GLUT UI thread is only started if

it has not been started before.

To explain the structure behind the main threads, the flowchart (fig. 4.1) is

compared to the sequence diagram in fig. 4.2. The components of both diagrams

are colored corresponding to each other. The sequence diagram (fig. 4.2) gives an

example of a connection to multiple sensors. Once a user has started the computer

and the File System is active, executes the prototype software and thus starts the

main thread. The main thread begins the step Discover Available Sensors before

creating a new thread for every detected sensor (see top left in fig. 4.1). The sequence

diagram (fig. 4.2) illustrates how the connections Sensor Connection 1 and Sensor

Connection x are created as a separate thread one by one. The fist thread initiates

the execution of the OpenGL/GLUT UI thread. All active sensor connection threads

supply the running OpenGL/GLUT UI thread with sensor data updates into the

Point Cloud Model.

Localizing and transmitting object positions from the OpenCV image of the point

cloud texture into the Point Cloud Model is realized by inserting the OpenCV Op-

erations and Update of Point Cloud Model section into the code. As illustrated in

fig 4.1 the additional code is only executed for the point cloud texture. It is part

of the streaming routine running inside every single sensor connection. In fig. 4.2

the positions retrieved from the point cloud texture are part of the continues Update

Data stream from each sensor to the OpenGL/GLUT UI thread.

After automatically loading previously stored settings once it is started, the

OpenGL/GLUT UI thread visualizes the point cloud data from the sensor thread

which initiated it. Pressing the I-key allows users to change the sensor on display.

The currently displayed sensor is also the source for all exported files. Fig. 4.2

illustrates how once the user requests to export files, the OpenGL/GLUT UI thread
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Figure 4.2.: This sequence diagram illustrates the communication of user and main

threads of the prototype software for object localization from 3D point

clouds. The three left most threads (illustrated in black) have been

adopted from Intentas sensor connection example (see 2.2). The blue

OpenGL/GLUT UI thread is the main addition to the Intenta exam-

ple. It reserves a constant stream of sensor data updates (symbolized

in green), interacts with the file system (in brown) and the user. The

constant visual output to the user is not represented.

replies by exporting the OBJ and CSV-file into the file system. The JPEG-file is

requested from the sensor connection of the currently displayed sensor which in turn

exports the JPEG-file to the File System itself. To simplify the prototype software all

possible types of export data are always exported simultaneously as soon as possible

once the user requests an export. Due to underling structure of the server connection

example provided sensor images from all connected sensors are visible in individual

output windows while the main window and UI, OpenGL/GLUT UI, displays only

the point cloud of one selected sensor. In fig. 4.1 the rhombus shapes symbolize

visual output with the inbuilt parallelism to keep multiple output windows open.
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Figure 4.3.: This flowchart presents the structure of the display() function within

the OpenGL/GLUT UI codes GLUT-Main-Loop. Represented in green

are member functions of the class Point Cloud Model. Marked in blue

are functions which belong to the OpenGL/GLUT UI. As visible the

functionality is mostly included into the Point Cloud Model class, but it

is executed by the display() function.

The display() Function The most essential part of the OpenGL/GLUT UI thread

is the display() function. Everything visualized through OpenGL is selected, trans-

formed and drawn through the execution of this function. The OpenGL/GLUT UI

thread begins by calling the glmain() function, which initializes the GLUT window,

inside of which an OpenGL scene is visualized. Most importantly glmain() starts the

GLUT-Main-Loop, which constantly updates the visualization by calling the display()

function.

Fig. 4.3 illustrates the importance of the Point Cloud Model class for the

OpenGL/GLUT UI code. It incorporates almost every aspect about the model

visualization. Only window title and the view towards the complex Point Cloud

Model object are not connected to the class. When the display() function is ex-

ecuted it first waits for export files to be saved, if exporting is requested. Next

the title of the OpenGL point cloud viewer window is set such that the currently
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selected sensor is displayed in the title bar. Then the point cloud is processed. This

means localization operations and preparations model preparations are performed

according to current settings and point cloud data. After the point cloud has been

processed transformations are applied to prepare drawing. As visible in fig. 4.3

transformations are categorized into the group of camera transformations and the

group of synchronization transformations. While camera transformations enable the

user of the localization software to view different the model from different angles and

distances, the synchronization transformations apply primarily to the point cloud

component of the model and enable calibrations. Size and position of the exportable

OBJ parts of the model are not effected by the synchronization transformations. The

positions of the object position markers (imported from OBJ-files) are computed ex-

ternally of OpenGL based on the model view matrix (see 3.4.1) of the synchronization

transformation during point cloud processing. This allows to export positions to OBJ

and CSV-files regardless of the camera transformation. Accept for the OBJ model

elements, other model elements like graphic extras, the point cloud and additional

markers are drawn transformed by OpenGL. Rather graphic extras, position markers

or even just the point cloud brightness values are drawn depends on the current user

settings. The OBJ parts of the model are exported only if they are visible in the

point cloud viewer window of the prototype software.

The keyboard() Function The GLUT windowing environment provides the key-

board() function to handle key input events. A switch case construct is utilized to

differentiate between several input keys. Keys for the execution of several functions,

provided by the Point Cloud Model class, are defined among keys influencing other

settings for the point cloud viewer. Switching between multiple sensors is imple-

mented through a key which triggers incrimination of the current sensor index or

resets the index to zero, if no sensor is available at the next index. Every time an

element of the pointCloudModel vector is utilized within theOpenGL/GLUT UI code,

the current sensor index determines which point cloud model is accessed. Similar to

the sensor index other numeric values or Boolean variable settings are stored globally

and utilized to save key settings, such that they can effect visualizing options inside

the display() function or similar. The key-map of the prototype software for object

localization from point clouds is found in the appendix.

4.2. Visualizing the S2000 Point Cloud with OpenGL

In order to visualize the point cloud from the S2000, the 2D-RGB-image represen-

tation (see fig. 2.2d) available to the sensor connection example (see 2.2) must

be converted into the coordinate values. Along with vertex coordinate the vertex

brightness must be extracted similarly from the calibrated image of the left sensor
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camera (see fig. 2.2b). The extracted numeric values are then feed into an instance

of the Point Cloud Model class. Lastly the OpenGL/GLUT UI thread is initiated.

The showPntCloud() Function The tasks, extraction, Point Cloud Model updating

and OpenGL/GLUT UI thread initiating, are implemented in the showPntCloud()

function, which is equivalent to the black elements to the left of Buffer Data Elements

from Sensor in fig. 4.1.

1 void showPntCloud ( svp2 ap i : : Sensor ∗ sensor , bool &f i r s tRun ) {
2 svp2 ap i : : Image pointCloudImage ;

3 svp2 ap i : : Image textureImage ;

4

5 auto const pointCloudData

6 = Scoped ( sensor−>GetData ( svp2 ap i : : PointCloud ) ) ;

7 i f ( pointCloudData != nu l l p t r )

8 pointCloudImage = pointCloudData−>GetImage ( ) ;

9

10 auto const textureData

11 = Scoped ( sensor−>GetData ( svp2 ap i : : RectLeft ) ) ;

12 i f ( textureData != nu l l p t r )

13 textureImage = textureData−>GetImage ( ) ;

14

15 i f ( f i r s tRun ) {
16 i n t 1 6 t ∗ po in t s

17 = reinterpret cast<i n t 1 6 t ∗>(pointCloudImage . data ) ;

18 u in t 8 t ∗ pntColor

19 = reinterpret cast<u in t 8 t ∗>( textureImage . data ) ;

20

21 pointCloudModel . push back (

22 PointCloudModel ( po ints , pntColor )

23 ) ;

24 f i r s tRun = fa l se ;

25 }
26

27 i f ( ! openGLstarted ) {
28 std : : thread glThread ( glmain , r e f ( pointCloudModel ) ) ;

29 glThread . detach ( ) ;

30 openGLstarted = true ;

31 }
32 }

The function definition in line 1 defines, that a pointer to a SVP2 API Sensor

variable must be passed to the showPntCloud() function and reference to the firstRun

variable is provided. Both variables contain information about the current sensor

connection thread. The variables pointCloudModel and openGLstarted are globally

defined. To enable the creation of models for multiple sensor connections, the point-

CloudModel variable is a vector of multiple instances of the Point Cloud Model class.
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The variable openGLstarted is of type Boolean and initialized with false. In the lines

2 and 3 local svp2 api::Image variables for point cloud and texture are initiated. The

lines 5, 6, 10 and 11 initiate pointer variables, through which data of the point cloud

and its texture is accessible. The lines 8 and 13 use these pointers to access the images

representing point cloud and texture and store them into the variables initiated in

line 2 and 3. In lines 16 to 19 these variables are reinterpreted to extract the numeric

values describing the image pixels. The pointCloudModel vector is then appended by

a new Point Cloud Model instance, initialized with the numeric pixel values of point

cloud and texture. To ensure only one Point Cloud Model instance is created per

sensor connection thread the lines 16 to 24 are only executed the first time the thread

runs the showPntCloud() function. Due to the use of pointers pointCloudModel kept

updated with current sensor values. To visualize the Point Cloud Model in line 28 the

OpenGL/GLUT UI thread is started with the glmain() function if it is not already

running.

The showPntCloud() function, as presented above, is the main connection between

the data stream from S2000 sensor to the OpenGL/GLUT UI thread. In principle

the glmain() function could be executed with point cloud data from sources differ-

ent to the SVP2 API for the S2000. To realize full functionality of the prototype

software (beyond simply displaying point clouds) the showPntCloud() function has

been modified to properly supply the final Point Cloud Model class implementation.

Additional arguments are required by the final Point Cloud Model constructor.

The drawPointCloud() Function In order to visualize vertex of the point cloud

based on its numeric values the GL POINTS primitive type of OpenGL 3.4 is utilized.

An iteration over all vertices within the point cloud is performed. While the prototype

software assumes a fixed point cloud size to simplify, the point cloud image structure

available through the SVP2 API provides the meta data to dynamically compute

point cloud array size. It is calculated size = rows× columns× channels.

1 void PointCloudModel : : drawPointCloud ( ) {
2 glBegin (GL POINTS) ;

3 for ( int i = 0 ; i < 589824; i += 3) {
4 f loat br i gh tne s s = ( pntCltColor [ int ( i / 3 ) ] / 255 .0 f ) ;

5 g lCo l o r 3 f ( br i ghtnes s ,

6 br ightnes s ,

7 1 − br i gh tne s s ) ;

8 g lVer t ex3 f ( cloudPnts [ i + 0 ] ,

9 cloudPnts [ i + 1 ] ,

10 cloudPnts [ i + 2 ] ) ;

11 }
12 glEnd ( ) ;

13 }
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The illustrated drawPointCloud() function is a minimal simplified version, which

supports drawing a point cloud with color values. In line 2 the interpretation of

vertices as points is defined. Within the for loop the brightness of every vertex is

interpreted as level of yellow color in lines 4 to 6. Dark colors appear blue due to line

7. Using such colors increases the visibility of blank spots within the point cloud,

because the contrast to the dark background is higher. The lines 8 to 10 create the

vertex at the position retrieved from the sensor. To realize full functionality of the

prototype software the drawPointCloud() function has been extended with a subarea

filter functionality.

4.3. Import and Export of 3D Objects and Positions

To create the exportable model, 3D-geometry has to be imported into the localization

software prototype. For this purpose the Model OBJ class is used1. This class

type is utilized to represent geometry objects within Point Cloud Model class. The

Model OBJ class supports loading geometry from OBJ-files, drawing the geometry,

transforming it and saving the transformed geometry of multiple objects into one

file. The position of objects inside the export OBJ are meter values and, as such,

extracted, displayed and exported into CSV-files.

Fig. 4.4 presents the relation between Point Cloud Model class and Model OBJ

class to illustrate how OBJ-files are handled within the prototype software. All ob-

jects loaded from OBJ-files are stored into a single array variable of type Model OBJ

inside of the Point Cloud Model class. This allows to implement the functions for

drawing and saving all OBJ geometry by iterating through the array and executing

the object specific functions. The Point Cloud Model class requires the definition of

two OBJ-files inside its constructor. A file name for the environment model (called

roomObjName) and a file name for an object model (called objectObjName) used

to represent object locations as position marker. The constructor then calls the

loadOBJs() function to load the Model OBJ geometry using the load function of the

Model OBJ objects for each file name. This is illustrated with green arrows in fig.

4.4. All OBJ-files for import must be triangulated and are expected to carry only

information about vertex positions and faces (see 3.5).

When loading a file, the Model OBJ class stores not only vertices and faces into

lists, but furthermore stores the biggest and smallest coordinate values from the ver-

tices, calculates the size of the model and computes normals for light representation

inside of the point cloud viewer. This information about OBJ geometry size is utilized

by the Point Cloud Model class to calculate the center of the environment model

1Model OBJ is based on the open source example glut obj.cpp available at http://openglsamples.

sourceforge.net/
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Figure 4.4.: In this UML representation the functionality of the Model OBJ class

is schematically explained. The Point Cloud Model class is reduced to

the functions directly related to the OBJ-class. Dashed arrows high-

light essential functions calls to illustrate the interaction of the classes.

The green arrows connect functions concerned with importing OBJ-files.

Dashed arrows in the center show functions for drawing imported OBJ

geometry. The export of multiple OBJ geometry elements into one file

is illustrated in brown.
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inside the lookAtRoomOBJ() function, which is part of the camera transformations

applied by the display() function mentioned in 4.1 fig. 4.3. To represent multiple

object position with one loaded OBJ it is copied. During point cloud processing

(see display() function in 4.1) the function copyOBJs() is called and creates marker

geometry instances for every position localized within the point cloud. Both, Point

Cloud Model andModel OBJ class, use matrix representations of the transformations

needed to reposition the marker geometry (see 3.4.1). As described in 4.1 for the

dispaly() function, the OBJ geometries vertices are transformed on the CPU to make

it exportable.

Once the geometry is loaded and markers are transformed to object positions, they

are visualized by OpenGL or exported into a combining OBJ-file. The visualization

is triggered by the Point Cloud Model class function drawOBJs() which iterates

though the available Model OBJ instances and calls each ones draw() function. The

drawOBJs() function also displays the position of each object by drawing distance

lines parallel to the coordinate axes and labeling them with the coordinate values of

the geometry object. To prepare export of the object marker position coordinates

into a CSV-file, a list with all values is stored inside drawOBJs() as well. While CSV-

files are exported by alternating the stored values and semicolon chars, exporting the

combined OBJ-file is more complex. The interactions required to export a single OBJ-

file with the geometry from multipleModel OBJ instances are highlighted with brown

color in Fig. 4.4. All file exports are triggered through the saveToFile() function of

the Point Cloud Model class. The same class incorporates the saveSceneToOBJ()

function, which directs the merge of multiple Model OBJ instances into one file.

To accomplish this task the function uses the capability of the Model OBJ class to

individually store vertices and faces into a file by appending it. saveSceneToOBJ()

at first creates a new file and writes a file header into it. Next for every Model OBJ

instances vertices are saved by utilizing its saveObjVs() function and the start vertex

position for ever object is stored using the getVertexCount() function. In another

loop, to properly save the faces of each Model OBJ instance (see 3.5), the indices

which describe faces are incremented by the previously stored start vertex position.

This is done by the saveObjFs() function of the Model OBJ class which additionally

creates an OBJ object element, to identify the source of OBJ parts (see 3.5). The

OBJ-file is complied.

To organize Model OBJ instances, the origin file name is stored into the objName

variable and an id variable is set to − to indicate the absence of an id. In case ids are

available for the locations represented by instances of Model OBJ, they are assigned

to the instance by the copyOBJs() function. Next to the origin file name the ids are

used as part of the object names in exported OBJ-files. For instances without an id

the starting vertex inside the OBJ-file substitutes the id in the object name. Also

inside CSV-files the id values are listed last, after the three coordinate values.
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4.4. Localizing Marker Positions with OpenCV

In this section the structure of the OpenCV Operations and Update of Point Cloud

Model algorithm in the context of 4.1 (see fig. 4.1) is described. The algorithms

primary purpose is to communicate the position and ID of an ArUco marker in the

point cloud texture to the Point Cloud Model. An imported secondary function of

the process is to draw found markers into the OpenCV image, which is saved as an

JPEG-file if an export is requested. Lastly the conversion of 2D-coordinates to a 3D

point cloud representation is explained.

Fig. 4.5 shows, that the first and most complex step in marker localization is

handled by the ArUco library module for OpenCV (see 3.3.2). The marker de-

tection algorithm searches the point cloud texture image for every marker of the

DICT 4X4 50 dictionary. If markers are located their corner coordinates and their

IDs are stored into separate C++ vector elements. For all found markers their

center coordinates are calculated as the intersection point between the diagonals

constructed out of the marker corners. Only the center coordinates of the marker are

utilized by the software prototype for object localization from point clouds. To avoid

race condition problems due to inter thread communication through the point cloud

model marker coordinates are not directly synchronized with the Point Cloud Model.

When a previously visible marker is not located anymore and thus not present in the

list of markers, the attempt to visualize it could crash the software. Consequently

once a marker has been located and stored inside of the Point Cloud Model it is

never removed from the model. To hide markers which are no longer detected an

additional marker visibility variable controls rather a marker is visible. The Update

List of Visible Markers element in fig. 4.5 symbolizes changing the value of visibility

variables for currently not detected IDs to invisible, the value for visible markers is

set to visible and previously unknown IDs are initialized as visible. Before updating

the marker coordinates inside the Point Cloud Model to the current marker position,

the marker IDs are drawn into the, not yet visualized, OpenCV image of the point

cloud texture. After the coordinates have been updated the algorithm checks if it is

ordered to export the current OpenCV image as a JPEG-file. To do so the Point

Cloud Model function hasSavingOrder() is utilized. In case the export is requested,

the JPEG-file is saved and to create a new file name for each image the number,

representing the current count of exported files, is added to the file name. A Point

Cloud Model function called takeSavingOrderNumber() provides this number and

turns off the save request inside the Point Cloud Model. As illustrated in fig. 4.5 and

4.1 the now altered image is visualized by OpenCV in the end.
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4.4. Localizing Marker Positions with OpenCV

Figure 4.5.: This flowchart illustrates the algorithm OpenCV Operations and Update

of Point Cloud Model in the context of fig. 4.1). Temporary local vari-

ables are colored gray, the Point Cloud Model communication is green

and export related items are brown. The main flow is colored black

and contains elements which summaries loops over multiple markers to

simplify comprehension.
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4. Implementation of a Prototype Software for Object Localization from

3D Point Clouds

The pnt2fToPCIndex() Function The Point Cloud Model class is constantly up-

dated with marker coordinates from OpenCV. However, these coordinates are only

two dimensional. In order to utilize the locations found, in the 3D-model, the 2D-

coordinates must be mapped into 3D-space. As described in 2.1, the S2000 provides

its point cloud in an image structure derived from the stereo images, such that the

point cloud texture image (from left camera) maps its brightness values to the point

cloud image through equal 2D-coordinates. The pnt2fToPCIndex() function provides

this mapping from texture image coordinate into the 3D vertex position.

1 int PointCloudModel : : pnt2fToPCIndex ( Po int2 f cvPnt , int widthImage ) {
2 return ( ( int ) cvPnt . y∗widthImage + ( int ) cvPnt . x ) ∗ 3 ;

3 }

Line 1 defines the function and its two input arguments, the cvPnt 2D-coordinate

from OpenCV and the width of the image (512 pixels is the common value). Because

the point cloud has been converted into an array with one dimension, line 2 calculates

the number of pixels in rows above cvPnt and adds it to the position of cvPnt within

its row. The one dimensional index for cvPnt is then multiplied by the 3 coordinate

channels, before its returned as the point cloud index. Any such calculated index is

utilized similarly to the loop variable i in the drawPointCloud() function described

in 4.2. Through a map type variable all marker coordinates are linked to their ID

inside of the Point Cloud Model. Before the coordinates are utilized, the visibility of

the point marker is checked by ID. Currently visible markers are highlieded inside the

point cloud using the drawMarkers() function, which draws the ID numbers into the

marker positions.The processPointCloud() function (see 4.1, fig. 4.3) provides options

to located points and areas within the point cloud based on marker coordinates. The

3D location marker geometry described in 4.3 is also translated based on OpenCV

coordinates if the option is selected by the user. The marker IDs are then also set as

IDs for the Model OBJ instances at their position.

4.5. Transforming Point Cloud into Reference Model

Coordinate System

The environment model which has been loaded from OBJ is defined such that it is

equivalent to scale and orientation of the frame cage in fig. 2.4b. Now the point

cloud must be transformed such that it is synchronized with the frame cage model.

As mathematically described in 3.6, the two step rotation is utilized to transform

the point cloud into the reference model orientation. The one step rotation method

is not utilized because it is less optimized for avoiding point errors in computer

implementation. Scaling of the point cloud is also implemented as described in 3.6.
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4.5. Transforming Point Cloud into Reference Model Coordinate System

(a) Overview of thee ArUco markers highlighting reference points according to their IDs. The

highlighted sensors have a good view of all markers.

(b) Reference point 1 at the center of the

ArUco marker with ID 1.

(c) Reference point 2 at the center of the

ArUco marker with ID 2.

Figure 4.6.: The positions in which the reference points for calibration of the point

cloud model must be positioned: Distances in x direction are illustrated

in red, green marks distances into the y direction. ArUco codes and IDs

are highlighted in blue. Five S2000 sensors and their IPs are marked

green.

51



4. Implementation of a Prototype Software for Object Localization from

3D Point Clouds

(a) Reference point 1 has manually been

moved into a position that matches the

real world (see fig. 4.6b). The location

marker itself is visible and the distances

to all 3 axes.

(b) Reference point 2 has manually been

moved into a position that matches the

real world (see fig. 4.6c). The image

is split into left, Y-distance of marker,

and right, the marker and remaining dis-

tances.

Figure 4.7.: In two screen shots from the prototype software for object localization

from point clouds, the manual calibration setting after the automatized

transformation into the coordinate system is shown. Visible are two foots

of frame cage pillars and a cube object marking point locations. X-Y-Z-

coordinates are visible in red, green and blue. The pink labels have been

added on top of the screen shot.

The practical implementation of the calibration method begins with a definition of

three reference points in the laboratory. Ideally the first two points should be equal

to the corners of the frame cage on the y-axis. However, these corners are not visible

to laboratory sensors because of the pillars of the frame cage. Thus, the reference

points are defined at a close position to these corners. In order to make the points

visible to the sensors and localization software 20 × 20cm ArUco codes are placed

in the laboratory. Fig. 4.6 illustrates a proper configuration of the markers inside

the frame cage. The markers are placed inside on the ground such that both are

at the same distance to the y-axis (0.27 m). Because of the marker size reference

point 1 (see fig. 4.6b) is 0.1 m away from the x-axis and reference point 2 (see fig.

4.6c) is 3.656 m away from it. The third reference point does not have to be at a

specific distance to x and y-axis, but it must be visible to the utilized sensors and

not between the first two reference points. The position in fig. 4.6a is more than 2

meters away from the y-axis. The 3 reference points define the ground plain. The

reference points 2 are used for scaling and rotating around reference point 1.

The prototype software localizes the markers as described in 4.4. When calibra-

tion is triggered by software users the setRefPntsFromMarkers() function stores the

current 3D-coordinates of the marker codes as reference points into the Point Cloud

Model for the transformation. The mathematical formulas of 3.6 are implemented

in the calculateSyncRotation() function. At first all three points are translated such

that reference point 1 is at the coordinate origin. Then the rotation axis and angle
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4.6. Implementation of Point Cloud Mask & Filter

for the rotation, which transform the second reference point into its position on

the y-axis, are computed. These calculations do not utilize matrix algebra and are

implement using standard C++ math functionality. However, to calculate the second

rotation angle (see two step rotation in 3.6), the position of the third reference point

after an OpenGL style transformation with the so far calculated values is required.

Hence, a model view matrix is generated by calling the so far possible synchronization

transformations. This matrix is then extracted to calculate the temporary position

of the third reference point (see 3.4.1). Then the second angle and the scaling value

are computed. All the calculated transformation values are stored in the Point Cloud

Model in order to apply them to every frame computed with the display() function

(see fig. 4.3 in 4.1) and to the OBJ geometry during the Process Point Cloud phase.

When the automatized transformation into the frame cage model coordinate system

was performed successfully the position of reference point 1 is equal to the coordinate

origin. Consequently it is manually translated to its real position with the software

prototype. The distances to coordinate axes are visualized in the prototype software

to support such and similar operations (see 4.7). The second reference point posi-

tion is corrected once the first reference point has been properly transformed. To

correct the second point position only the scaling option is utilized, because it does

not effect the previously set position of reference point 1. To avoid overlapping of

distance values from multiple reference points, the ArUco markers associated with

the unused reference point are simply covered in reality. Consequently they are no

longer visible in user interface of the software. Fig. 4.7a presents the OpenGL

visualisation of reference point 1 after automatized and manual calibration, while

the other reference points are hidden. Fig. 4.7b presents the equivalent visualisation

of reference point 2 and its calibration. The third reference point is not manually

adjusted, it should, however, have a Z-coordinate-value of 0.00m. Precise calibration

leads to more accurate model representations. Once the calibration is completed a

configuration-file for the selected sensor is saved by the software prototype user. This

configuration will be applied to the sensor every time it is connected to by the object

localization software. To save calibration changes afterwards the calibration-file is

overwritten.

4.6. Implementation of Point Cloud Mask & Filter

Masks, Filters and the concept of subareas, as implemented for the prototype soft-

ware, are described in 3.2. The point cloud is split into subareas by rounding the

coordinate values of each vertex. Multiple vertices in the same subarea share the

same rounded coordinate values. The createCloudMask() function, illustrated in

4.8, implements this concept. The function returns a vector of maskArea instances,

identifying all subareas which contain at least a single point cloud vertex. The
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4. Implementation of a Prototype Software for Object Localization from

3D Point Clouds

Figure 4.8.: This flowchart illustrates the algorithm for the generation of maskArea

vectors, the createCloudMask() function. Such vectors contain not only

a number of masked point cloud subareas, but also count the number of

point cloud vertices within the subarea. Variables are colored gray and

the main flow is black.
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4.7. Implementation Summary

maskArea struct is defined to count the vertices found within each subarea of the

point cloud. Thus, it can be interpreted as a point cloud mask, hiding all subareas

inside of which vertices were found when the mask was recorded by executing the

createCloudMask() function. If the number of vertices per subarea (or maskArea) is

interpreted as the density value for the density filter, the same vector of maskArea

objects may be interpreted as a filter.

In order to create a mask for the Point Cloud Model, its member function use-

AsCloudMask() is called by the keyboard() function (see 4.1). The newly generated

mask is stored as a variable of the Point Cloud Model and can be utilized immediately.

Another key option of the prototype software allows the user to back up (save) the

point cloud mask. If such a mask-file exists for a sensor it is automatically loaded

whenever to prototype software is started and connected to the same sensor again. To

ensure all computations utilizing the mask are executed properly, the maskDev value,

which defines the size of mask areas, is stored inside the mask-files. Interactively

changing maskDev is not supported in the prototype software, but through changing

the mask-file externally experiments may be conducted. To generate a filter, for every

point cloud frame a vector ofmaskArea objects is created using the createCloudMask()

function. Subareas are than filtered, if the current count value of the maskArea is

less than a filter value. The point cloud filter value is alterable interactively. Filter

values are stored into and loaded from the sensor specific configuration-file.

The filtered maskArea vertex positions are utilized as an alternative coordinate

source for OBJ marker objects. Although the rounded coordinate values are not as

accurate as the marker positions provided by OpenCV, it is a useful alternative, since

no marker preparation is required. The drawPointCloud() function introduced in 4.2,

is improved by inserting if conditions to check rather a vertex is masked or filtered

before drawing it. The vectors of maskArea objects are constantly searched by vertex

positions. Every single point cloud vertex is converted into a maskArea object and

then searched for in the mask & filter vectors. To enable fast computation of this high

number of search operations, the std::binary search function is utilized. Comparison

operators for maskArea are defined such that comparing the struct instances to each

other is equal to comparing the member variable vertex of the instances. This allows

the std::binary search function to process maskArea objects.

4.7. Implementation Summary

For the implementation of the software prototype for loudspeaker localization from

point clouds, 56 functions for 3 classes and multiple code units have been newly cre-

ated. All new and modified functions have descriptive names and comments explain-

ing the implemented functionality. Based on the SVP2 API Multisensorconnection

Demo (see 2.2) by the Intenta GmbH and an example implementation of an OBJ-
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4. Implementation of a Prototype Software for Object Localization from

3D Point Clouds

File Type File Name Contained Data

Comma Separated Value Number + IP + ”.csv” located coordinates and IDs

Wavefront OBJ Number + IP + ”.obj” 3D-model of the laboratory

JPEG-Image Number + IP + ”.jpg” 512× 384 pixels image

(Internal) Mask File IP + ”.msk” a list of masked subareas

(Internal) Settings IP calibration and adjustments

Table 4.1.: The files saved by the software prototype for localization. The last two

files listed are created for the software prototype only, while others are

exchange formats.

file-loader2, the prototype was designed. The example by Intenta was modified such

that it triggers a newly implemented OpenGL visualization of the S2000 point clouds.

To control the software prototype centered with the OpenGL/GLUT UI more than

30 key commands (see attachment A) have been created. The core of the software

prototype implementation is the Point Cloud Model class containing 33 functions

alone. It was created to at as a connector between threads, a tool for point cloud

analysis and a visualization tool. As such the Point Cloud Model class also visualizes

OBJ-geometry. The Model OBJ class from the OBJ-file-loader was extended by

4 functions which now enable exporting altered OBJ-geometry. Additionally two

existing functions of the Model OBJ class have been modified to add functionality.

An essential part of the implementation is the localization of optical markers in the

point cloud (see 4.4) and the model calibration (see 4.5). Model calibration is a part

of the Point Cloud Model class, while the localization of optical markers relies on

the modification of the SVP2 API Multisensorconnection Demo to which 5 functions

with the purpose of connecting an OpenCV ArUco detection (see 4.4) to the Point

Cloud Model class have been added.

To run the loudspeaker localization software at least one S2000 sensor must be

connected other Ethernet and the files lab.obj and object.obj must be in the directory

from which the program is executed. A guide on how to use the localization software

is given in attachment B. The software prototype for loudspeaker localization from

point clouds exports three types of files representing the current laboratory setting,

a masking file and a file containing sensor configurations. Tab. 4.1 gives an overview

of all file formats saved by the software prototype.

2Find the open source example glut obj.cpp at http://openglsamples.sourceforge.net/
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5. Evaluation of Localization Methods

The evaluations of the software prototype implemented in the course of this thesis is

presented in this chapter. At first in 5.1 general considerations in preparation of the

tests are made. The first test conducted in 5.2 evaluates the stability of the reference

points utilized calibration of the sensors. 5.3 documents the tests conducted in order

to analyze the point cloud precision and accuracy. Finally, the tests conducted in 5.4

compare different methods of loudspeaker localization.

5.1. Preliminary Considerations

The prototype software for the localization of loudspeakers inside the audiovisual

laboratory utilizes the point clouds of S2000 sensors. As mentioned in 2.1, the sensors

have a 97o field of view and their point cloud is represented inside an image structure

of 512 × 384 pixels, similar to the point cloud texture image. Based on the sensors

field of view and simple a triangulation the area captured by the sensor in 1 m

distance to it, is ca. 2.26 m across. Since this range is represented by 384 → 512

pixels, the distance between points represented through pixels is about 5 mm at 1 m

distance to the sensor. It is concluded that the general distance between the points

represented by pixels is roughly 5mm × d, where d is the distance of point to the

sensor. Consequently, with the sensors installed at about 2.45 m above the ground,

a precision of no more than a centimeter is aspected in testing. The conversion the

from 2D-coordinates to 3D vertex positions may additionally impair the precision

and accuracy of measurements.

In order to be able to evaluate the point cloud accuracy of a sensor it must be

calibrated as described in 4.5. Five sensors with a good view over the markers (a

requirement for the calibration) have been chosen for evaluation. They are positioned

as illustrated in 4.6a. The last two digits of each S2000 IP will be utilized to refer

to the sensors in the evaluation. The calibration transformation itself is evaluated

in 5.2 for each sensor. Since the ArUco markers (see 3.3.2) are utilized to determine

stable positions in 2D1, the same markers2 as used for calibration of the software are

reused to test accuracy and precision of the point cloud in 5.3. It is not tested under

which conditions the ArUco markers are detectable, since their detection depends,

12D-coordinates of the point cloud texture determine 3D-coordinates inside the point cloud as

described in 2.1
2ArUco markers of the DICT 4X4 50 dictionary with a size of 20× 20cm.
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5. Evaluation of Localization Methods

among other factors, on the lighting conditions which cannot be documented and

reproduced in the audiovisual laboratory.

Reference coordinates are independently measured using traditional measuring in-

struments and a laser measuring device. Based on the point cloud test, the mask &

filter implementation (see 4.6) of localizing loudspeakers is evaluated against the

method of using markers. The subareas, which represent a positions of objects

without markers when located, are evaluated in size and position.

5.2. Stability of Calibration and Reference Points

The translation, two step rotation method and scaling approach introduced in 3.6

and implemented in 4.5 are evaluated alongside the stability of the point cloud by

recording the coordinates of the reference points from multiple sensors after calibra-

tion. Fig. 5.1 and 5.2 illustrate the fluctuations measured in 3D-coordinates of the

reference points over 25 recordings with the prototype software for localizing from

3D point clouds. Within the point cloud texture image, localized 2D-coordinates of

the markers do not change with exception of a single change by one pixel of reference

point 3 in the recordings of sensor 57. Thus, changes in the 3D-coordinates of every

other sensor and reference point must be caused by the fluctuations of point cloud

vertex positions. Tab. 5.1 compares the same coordinate recordings. All reference

marker positions remain within one up to two centimeters of the ground, accept for

rare extreme values. In the test recordings such values did not occur more than

three times per 25 recordings. Point 1, the center of the calibration transformations

(see 3.6) is the most consistent in its location, while point 2 (the furthest away

the center of the calibration transformations), is slightly more inaccurate. However,

considering the sensors resolution (see 5.1), both points are in the positions targeted

by a calibration transformation (see 3.6). Also the z-coordinate of the third reference

point is zero or within centimeters of it. Thus, transforming, rotating and scaling of

the point cloud does not fail. The x and y coordinates of the third reference point

(see tab. 5.1) are very stable within the individual sensors. However, a difference of

up to half a meter between the positions, the sensors identify, appears to demonstrate

point cloud distortions. The existence and nature of such distortions is investigated

in 5.3.
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5.2. Stability of Calibration and Reference Points

Figure 5.1.: Part 1 of the calibration test visualization. The results from sensor 52,

54 and 56 are presented in an image and a scatter plot. For the results

of sensor 57 and 58 or more about the visualization see 5.2.
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5. Evaluation of Localization Methods

Figure 5.2.: Part 2 of the calibration test visualization. The point cloud texture

images of sensor 57 and 58 are presented. In both parts of the calibration

test visualization, the images with IDs of detected reference markers

were exported along with one of the 25 (mostly equal) 3D-coordinate

measurements visualized in the scatter plot on the right. The distance

to zero on the z-axis is indicated by increasing size and blue color of the

circles in the plots. The bluest and biggest circle (see sensor 52 in fig.

5.1 of part 1) indicates a computed distance of 7cm to the ground.
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5.3. Point Cloud Precision and Accuracy

Point Sensor X Y Z

52 27± 0cm 10± 0cm 0± 1cm

54 27± 0cm 10± 0cm 0± 0cm

1 56 27± 1cm 10± 1cm 0± 1cm

57 27± 1cm 10± 1cm 1± 0cm

58 27± 0cm 9± 1cm 1± 1cm

52 26± 4cm 360± 5cm 1± 6cm

54 27± 1cm 365± 0cm 0± 3cm

2 56 28± 2cm 365± 1cm 2± 2cm

57 29± 0cm 365± 1cm 1± 1cm

58 27± 0cm 365± 3cm 0± 1cm

52 226± 0cm 190± 0cm 1± 1cm

54 224± 0cm 160± 0cm 1± 0cm

3 56 222± 0cm 159± 1cm 0± 1cm

57 214± 1cm 203± 0cm 0± 1cm

58 213± 0cm 154± 0cm 0± 0cm

Table 5.1.: Reference point positions and fluctuations after calibration. The coordi-

nate values consist of most frequent position and maximum fluctuation

over 25 test recordings per sensor.

5.3. Point Cloud Precision and Accuracy

In order to evaluate the point cloud measurements of different sensors to manually

measured references, a test pattern with 4×4 ArUco markers is created. The markers,

of the DICT 4X4 50 dictionary with a size of 20× 20cm, are placed with a distance

of 30cm to each other as visualized in 5.3a. The test pattern is recorded 20 times with

all five sensors calibrated in 5.2. This process is repeated at five different heights.

Thus, generating a total of more than 1500 localized coordinates per sensor. Fig. 5.3

presents all five recording heights from the perspective of sensor 57. Due to technical

limitations the height of the test pattern may differ partially by a maximum of±5mm,

which is adaptable since the results of 5.2 show a common position fluctuation by

±1cm.

For each sensor all measurements are now concatenated from the CSV-files recorded

with the prototype software. To help analyze the test results they are visualized with

the RAWGraphs visualization tool[MEC+17], which is optimized for plotting data

from CSV-files. To further customize the visualization Inkscape3 is utilized. Using

these tools the diagrams in fig. 5.4, 5.5, 5.6, 5.7 and 5.8 are created. Diagrams

3Inkscape is a vector graphics editor which is open source. See https://inkscape.org/en/
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5. Evaluation of Localization Methods

for each sensor are accompanied by a screenshot of the prototype software’s UI (e.g.

5.4a), where the point cloud reviles the sensor position due to the shadow like artifact

described in 3.1.

Sensor precision is tested by comparing multiple measurements from one marker

(differed by ID) and one sensor. The closer the located coordinates are to each other,

the better is the precision of the sensor. Although notable irregularities occur in the

tests performed with sensor 54 (see fig. 5.5) the majority of maker localizations of all

sensors are within ±5cm coordinate distance to each other. However, fig. 5.4c, 5.6d,

5.7c and 5.8c illustrate very well, displacements of x-y-coordinate values appear in

z-direction. About 15cm of difference in the otherwise precise x-y-coordinate values

appear when the measurements over the full test range of 1.28m are compared (see

fig. 5.4b, 5.6b, 5.7b and 5.8b).

The sensor accuracy is tested by comparing the ground truth coordinates to the

measurements recorded with the prototype program. Some of the coordinate values

recorded by the sensors 52 and 58 deffer by ±30cm from the ground truth position.

As visible in fig. 5.4 and 5.8, this creates misrepresentations where detected markers

could be mistaken for their neighbours if they had no ID assigned to them. An

extreme case is sensor 57 (as shown in fig. 5.7), which has y-coordinate values of up

to 50cm bigger than expected.

The over all best test results in accuracy and precision are achieved by the sensors

52 (see 5.4) and 56 (see 5.6) at current calibration. Altered calibration methods may

improve accuracy.
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5.3. Point Cloud Precision and Accuracy

(a) The test pattern with 4×4 ArUco codes. (b) Test pattern at the height of 0.15m

(c) Test pattern at the height of 0.83m (d) Test pattern at the height of 1.13m

(e) Test pattern at the height of 1.28m (f) Test pattern at the height of 1.43m

Figure 5.3.: The test for point cloud precision and accuracy: Fig. 5.3a presents the

test pattern made of 16 ArUco codes 20× 20cm in a distance from 10cm

to each other. The different testing heights are presented in fig. 5.3b,

5.3c, 5.3d, 5.3e and 5.3f from the view of sensor 57.
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5. Evaluation of Localization Methods

(a) The position of sensor 52 (symbolized by

a green dot) and its view towards the test

pattern in a screen shot of the localiza-

tion software prototype UI. The visual-

isation shows the point cloud of sensor

52 for the test setting of height 0.83m

inside the frame cage model.

(b) Diagram of the x-y-coordinates of test

markers on the test pattern and recorded

coordinates for each markers position lo-

calized by sensor 52.

(c) Diagram of the y-z-coordinates recorded

by sensor 52. The different heights of

test recordings are illustrated by black

lines through the z-axis.

(d) Diagram of the x-z-coordinates recorded

by sensor 52. The different heights of

test recordings are illustrated by black

lines through the z-axis.

Figure 5.4.: Point cloud position localization test of sensor 52: 5.4a shows the software

prototype UI during testing and the camera position. Over 1500 localized

positions are plotted into the diagrams 5.4b, 5.4c and 5.4d (the less than

1 % failed localizations have been excluded). The axis scales (in meters)

illustrate the ground truth coordinates of all markers. Different marker

IDs of the utilized test pattern are symbolized by color.
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5.3. Point Cloud Precision and Accuracy

(a) The position of sensor 54 (symbolized by

a green dot) and its view towards the test

pattern in a screen shot of the localiza-

tion software prototype UI. The visual-

isation shows the point cloud of sensor

54 for the test setting of height 0.83m

inside the frame cage model.

(b) Diagram of the x-y-coordinates of test

markers on the test pattern and recorded

coordinates for each markers position lo-

calized by sensor 54.

(c) Diagram of the y-z-coordinates recorded

by sensor 54. The different heights of

test recordings are illustrated by black

lines through the z-axis.

(d) Diagram of the x-z-coordinates recorded

by sensor 54. The different heights of

test recordings are illustrated by black

lines through the z-axis.

Figure 5.5.: Point cloud position localization test of sensor 54: 5.5a shows the software

prototype UI during testing and the camera position. Over 1500 localized

positions are plotted into the diagrams 5.5b, 5.5c and 5.5d (the less than

1 % failed localizations have been excluded). The axis scales (in meters)

illustrate the ground truth coordinates of all markers. Different marker

IDs of the utilized test pattern are symbolized by color.
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5. Evaluation of Localization Methods

(a) The position of sensor 56 (symbolized by

a green dot) and its view towards the test

pattern in a screen shot of the localiza-

tion software prototype UI. The visual-

isation shows the point cloud of sensor

56 for the test setting of height 0.83m

inside the frame cage model.

(b) Diagram of the x-y-coordinates of test

markers on the test pattern and recorded

coordinates for each markers position lo-

calized by sensor 56.

(c) Diagram of the y-z-coordinates recorded

by sensor 56. The different heights of

test recordings are illustrated by black

lines through the z-axis.

(d) Diagram of the x-z-coordinates recorded

by sensor 56. The different heights of

test recordings are illustrated by black

lines through the z-axis.

Figure 5.6.: Point cloud position localization test of sensor 56: 5.6a shows the software

prototype UI during testing and the camera position. Over 1500 localized

positions are plotted into the diagrams 5.6b, 5.6c and 5.6d (the less than

1 % failed localizations have been excluded). The axis scales (in meters)

illustrate the ground truth coordinates of all markers. Different marker

IDs of the utilized test pattern are symbolized by color.
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5.3. Point Cloud Precision and Accuracy

(a) The position of sensor 57 (symbolized by

a green dot) and its view towards the test

pattern in a screen shot of the localiza-

tion software prototype UI. The visual-

isation shows the point cloud of sensor

57 for the test setting of height 0.83m

inside the frame cage model.

(b) Diagram of the x-y-coordinates of test

markers on the test pattern and recorded

coordinates for each markers position lo-

calized by sensor 57.

(c) Diagram of the y-z-coordinates recorded

by sensor 57. The different heights of

test recordings are illustrated by black

lines through the z-axis.

(d) Diagram of the x-z-coordinates recorded

by sensor 57. The different heights of

test recordings are illustrated by black

lines through the z-axis.

Figure 5.7.: Point cloud position localization test of sensor 57: 5.7a shows the software

prototype UI during testing and the camera position. Over 1500 localized

positions are plotted into the diagrams 5.7b, 5.7c and 5.7d (the less than

1 % failed localizations have been excluded). The axis scales (in meters)

illustrate the ground truth coordinates of all markers. Different marker

IDs of the utilized test pattern are symbolized by color.
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5. Evaluation of Localization Methods

(a) The position of sensor 58 (symbolized by

a green dot) and its view towards the test

pattern in a screen shot of the localiza-

tion software prototype UI. The visual-

isation shows the point cloud of sensor

58 for the test setting of height 0.83m

inside the frame cage model.

(b) Diagram of the x-y-coordinates of test

markers on the test pattern and recorded

coordinates for each markers position lo-

calized by sensor 58.

(c) Diagram of the y-z-coordinates recorded

by sensor 58. The different heights of

test recordings are illustrated by black

lines through the z-axis.

(d) Diagram of the x-z-coordinates recorded

by sensor 58. The different heights of

test recordings are illustrated by black

lines through the z-axis.

Figure 5.8.: Point cloud position localization test of sensor 58: 5.8a shows the software

prototype UI during testing and the camera position. Over 1500 localized

positions are plotted into the diagrams 5.8b, 5.8c and 5.8d (the less than

1 % failed localizations have been excluded). The axis scales (in meters)

illustrate the ground truth coordinates of all markers. Different marker

IDs of the utilized test pattern are symbolized by color.
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5.4. Loudspeaker Localization from Point Clouds

5.4. Loudspeaker Localization from Point Clouds

Based on the previous tests the location of loudspeaker is evaluated. By utilizing

a point cloud mask & filter, as described in 4.6. The position of subareas, which

remain in the visualized point cloud, is exported as object coordinates if done so. The

size and position of subareas is tested by recording loudspeakers in 2cm-wise steps

through a minimum distance of half a meter. Fig 5.9 presents the localization test,

performed with the smallest and biggest laboratory loudspeaker. Find loudspeaker

specifications in tab. 2.1. Both tests are performed with sensor 52 and the default

filter value of 170. Similar to 5.3, the test results are visualized with the RAWGraphs

visualization tool[MEC+17] and further modified.

The Genelec 8010 AP is utilized to test the resolution with which changes in

z-direction are recorded when the mask & filter method is utilized. The test is

illustrated in fig. 5.9a. The test results in fig. 5.9b and 5.9c show characteristic

coordinate jumps in not only the tested z-direction, but also the other two coordi-

nates. In the test new subareas in z-direction are entered every 11 to 12cm. Jumps

of the same size occur in x-direction, jumping back and forth between two coordinate

values surrounding the actual x-coordinate of the loudspeaker (see 5.9b). With similar

jumps in y-direction the effect is even more drastic, as the back and forth alterations

visualized in 5.9c have a distance of ca. 16cm. Due to its small size the 8010 AP

is detected as in one subarea position at a time during test recordings. Only at

the bordering areas of two subareas (about 1, 5cm wide) two subarea coordinates

represented the single loudspeaker in recorded values.

The TANNOY Reveal 502 is utilized to test the resolution with which changes

in y-direction are recorded when the mask & filter method is utilized. The test is

illustrated in fig. 5.9d. The test results in fig. 5.9e and 5.9f, as in the previous

test, show characteristic coordinate jumps in not only the tested y-direction, but also

jumps in the other two coordinates. In the test new subareas in y-direction are entered

every 15 to 16cm. In x-direction jumps of only 9cm back and forth between three

coordinate values surrounding the actual x-coordinate of the loudspeaker (see 5.9e)

occur. This seems to be due to the large size of the loudspeaker, 23.8cm length in

x-direction. Alterations of 11cm on the z-coordinate also occur (visualized in 5.9c).

Due to its large size TANNOY Reveal 502 is detected as in two to three subarea

position at a time during test recordings.

Over all up to ±7.5cm error, due to the subarea coordinate rounding, are to be

expected additionally to the errors occurring in 5.3 for each sensor. This is true,

if the subarea coordinates properly center around the object they represent. A

final test, comparing the subarea and marker based localizations of Genelec 8030

BPM loudspeakers is conducted with multiple sensors. To place the previously used

20 × 20cm ArUco codes on the loudspeakers, double sided tape is sufficient. The
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5. Evaluation of Localization Methods

(a) The Genelec 8010 AP in

three representative po-

sitions during the test.

Only the height (z) is

changed.

(b) 8010 AP coordinates

derived from subarea

in meters. The x-

coordinate is falsely

changing.

(c) 8010 AP coordinates

derived from subarea

in meters. The y-

coordinate is falsely

changing.

(d) The TANNOY Reveal

502 in three represen-

tative positions during

the test. Only the y-

coordinate is changed.

(e) Reveal 502 coordinates

derived from subarea

in meters. The x-

coordinate is falsely

changing.

(f) Reveal 502 coordinates

derived from subarea

in meters. The z-

coordinate is falsely

changing.

Figure 5.9.: The mask & filter subarea size tests: The small Genelec 8010 AP in fig.

5.9a is moved up in z-direction in 2cm steps resulting in the subarea co-

ordinates visualized in fig. 5.9b and 5.9c. Similarly the bigger TANNOY

Reveal 502 in 5.9d is moved sideways resulting in the subarea coordinates

presented in fig. 5.9e and 5.9f.

70



5.4. Loudspeaker Localization from Point Clouds

markers are attached to the speakers, such that their center (localized by the software

prototype) is equivalent to the center of the top most point of the loudspeakers. The

markers must be visible to the sensor used for recording. Fig. 5.10 presents the view

of sensor 56 towards the perpetrated 8030 BPM loudspeakers. The representative

results achieved with sensor 56 are presented in fig. 5.11. The ground truth coordi-

nates of the loudspeakers during this test are 1.80m and 1m distance to the x- and

y-axis with one 8030 BPM closer to the x-axis (red in fig. 5.11) and the other closer

to the y-axis (green in fig. 5.11). During the test the loudspeakers are moved in z-

direction such that multiple neighbouring subareas are passed. A displacement of the

subarea coordinates from the marker based coordinates in up to 30cm towards the x-

direction is visible in fig. 5.11. As the marker based loudspeaker localizations are not

in-between the subarea localizations (concerning the x-axis), the subarea coordinates

are not properly centered around the object they represent. This is likely due to

the method of rounding coordinate values in order to summarize vertex coordinates

into a subarea (see 4.6). Tests with other sensors conform a displacement of up

to +30cm when subarea based localizations are utilized. These displacements must

always be taken into account additionally to the point cloud distortion investigated in

5.3. Thus, the extra effort of attaching markers to the localized loudspeakers greatly

improves the accuracy and precision of the localizations performed with the software

prototype for the localization of loudspeakers from point clouds.
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5. Evaluation of Localization Methods

Figure 5.10.: The view of sensor 56 towards the test setting for the comparison be-

tween localizations conducted with ArUco markers and mask & filter

subareas. two Genelec 8030 BPM loudspeakers with markers, attached

to their top most point, are visible.
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5.4. Loudspeaker Localization from Point Clouds

Figure 5.11.: Comparison between localizations conducted with ArUco markers (in

green and red) and mask & filter subareas (in blue) are visualized in this

diagram. two Genelec 8030 BPM loudspeakers with markers attached

are used in the illustrated test. Several heights, combined in the plot,

are recorded with both localization techniques, from sensor 56.
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6. Summary and Conclusion

This thesis has introduced a software prototype for the localization of loudspeakers

and other objects. It is based on optical sensor data, within the audiovisual laboratory

of the junior professorship Media Computing at Chemnitz University of Technology.

The requirements for the software prototype included utilizing the already installed

S2000 smart sensors, produced by the Intenta GmbH. Two methods of localizing

loudspeakers and other objects have been implemented and evaluated.

The mask & filter method has a low precision of 16cm distance between measure-

ments of the same coordinates and lower accuracy of ca. 40cm to 80cm distance

towards the actual object position in the worse case, depending on the utilized

sensor. The benefit of the mask & filter method is, that it does not require additional

preparations of the localized objects.

The optical marker method requires the preparation of objects to be localized with

markers. However, its precision is as good as the precision of the point cloud itself,

0cm to 1cm distance between measurements of the same coordinate and up to 6cm

in extreme, rare, cases. Accuracy of the optical marker method varies from less

than 20cm distance, towards the actual object position on the calibrated ground, to

more than 50cm in heights of more than 1.30m. Test results depend on the utilized

sensors. Another benefit of the optical marker method is that located objects are

distinguishable by marker ID.

The main enhancement for the audiovisual laboratory, provided by the software

prototype created in this thesis, is the file export functionality. As described in 4.3,

3D-models of test settings, inside the laboratory’s frame cage, and CSV-files, con-

taining 3D-coordinates recorded from the S2000 sensor point cloud, are exportable.

The development and evaluation of acoustic localization methods in the audiovisual

laboratory is simplified, because time consuming manual measurements must only be

conducted for acoustic localizations of higher accuracy than provided by the software

prototype for the localization from 3D point clouds.

74



7. Outlook

This thesis presented two methods for object localization based on the S2000 sensor

data. As shown in 5.3, distortions of the point cloud lead to bad accuracy when

only three points are used for calibration as implemented in 4.5. Such distortions

influence both localization methods. The calibration method could be further im-

proved by utilizing additional reference points. The mask & filter method is depended

on the maskDev value, which regulates the size of subareas for masking, filtering

and localization as described in 4.6. Systematic research could be conducted to

find ideal maskDev values and thus, improve the mask & filter localization method.

Furthermore dynamic localizations, of objects in motion, could be investigated.
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A. The Keymap for the Localization Software
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B. Guide to Using the Localization Software

1. Make sure at least one S2000 sensor is properly connected via Ethernet.

2. Start the Intenta software SVPManager and set ControlModus to 3 for all

sensors you want to use.

3. Make sure the files lab.obj and object.obj are in the same directory as the

prototype.exe executable. Configuration or mask files should also be present

in the same directory if you want to use them.

4. Start the localization prototype software. A double click on the

prototype.exe executable will start the localization prototype software,

connected to all available sensors. To select a sensor run prototype.exe

svp2://192.168.10.57 (with the IP of the sensor you want to connect to) in

the command line.

5. Calibrate the the sensor as described in 4.5 if not already done so. Once the

ArUco markers are placed, use the key options for calibration as described in

attachment A (see Moving PointCloud). For manual calibration press the

O-key and the H-key to see the positions of the markers without distraction

by the point cloud.

83



Bibliography

6. Record a mask of the empty room by pressing the N-key. Use it by pressing

the M-key. Notice that the keys F, H and M regulate the visibility of the

point cloud. Make sure to combine only the options you want.

7. With a calibrated sensor you can now start to measure the locations you are

interested in. Place the objects you want to record in the sensor view and

make sure the markers on the objects are detected by the sensor. An image,

similar to the example shown here, will be visible to you in one of the

windows that started with the program.
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8. Go to the main window of the software prototype and look at the detections

the program is making. Use the Mask and Filter Options (see attachment A)

to find the setting that suites you best. The P-key is very important as it

switches between placing objects by mask & filter subareas or by ArUco

markers. ArUco markers are the default option as used for the example

screenshot.
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9. To export the an image, CSV-file and OBJ 3D-model of the scene, press the

space-key. The exported files can be used in other programs such as Blender

(imports the OBJ-Model) and spreadsheet software (usually imports CSV

files). See in this example screenshot how files may be viewed once they have

been exported from the localization prototype software.
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